
Apply ing the property g i vt ’t . in Eq. ~ to Eq. 11 yields the transform pair

for a ramp 1 m ~’t ion :

t~~~=::~ 
_
~~

. (_
~
._) ! ( 1~’)

Repeat the application , this time to Eq. 1. ’, and obtain the transform pair

for t’ :

t’~~~~~~~~~~~(J~) = $ = ~~~ (i~~)

In a like manner , the application of this property to Eq. 1 gives :

te
at 

d (  1 )  
1 ( i n )

(s +a)’

By proce eding in this fash ion we have now bu ilt up Table 1 . This abbre-
v iate ~1 table is sufficient for most of our needs since the occurrence of

multiple poles in aircraft stability and control work is somewhat rare.

Later we will use the same approach to develop a table of z-transformns.

This will result in a third column for Table 1.

Consider next an efficient method for expanding a given rational poiy-

nomiztl function F(s) in terms of the entries of Table 1. since the entries
ci’ Table I constitute the set ol’ elementary time functions of interest- . t
makes good sense to expand F(s) in terms of these time functions. Tc- i l lus-
t.rat-e , gtven the proper rational F(s).

F(s) = 
1 - ’s’ I 4 

~~~
S~ -+ ~5 I ~~ 4 1 ‘~~

t hen i t -  .1 s ~onvcni  eat .  t~ expand the r ight —hand s ide  a t-eii~s ci’ pnrt  i a

fra’ t. ~i cn s  , viz .

I
0
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TABLE 1

AN ABBREVIATED TRANS FORM TABLE

f(t) F(s) =~~~[f(t)}

u(t)

a -

e at 1
s ÷ a

—at 1te
(s + a)2

b
sin bt

+ b2

cos bt 
s2 +b 2

e~~
t sin bt b

( s  + a)~ + b2

—at s + ae cos bt 2 2(s + a) + b

10
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• I - ~~
‘ 1 

~~~~ F’ ~~
- — -4 (it )

(~~~\~~ s • 1\ (~~’
. -.s • t ~~’ 

. . , ‘4 -

S

s 1~ (s • • (:- ‘ 4 .  ( 1 - )

~~~~~~
‘ ‘ t h e  p art  F ’t l  t’raction coot 1~~c i e n t  A , P , C . and F’ no known , ho ime

r~in t i on  can be writ en immediately as:

:‘, t ‘4 Au( ‘4 Pe ’ . o ’ ( C  sos A t  • P sin t ‘4 (1 ~ )

- n r  ‘ :  y or  ‘~ay s o find A • F’ . C . a nd fl . Ver ox :tt le • ~vslt ~p 1y

~i 1 i  :~ i~~ Ot i’F~. ~~ by and l~ t t o  ~‘in ~ A = 1. Ncxt . u~ t.~ p~ y onch
and let a — 1 t o  f in d  P = I . Next . malt iply each side of

he ‘i -n i  on by and le ‘ S = ~~~. c n i  L-mt I hat A F’ C ~~~, and the r~—V
:‘cr C I . .‘ nallv , p ok any c on v en i en t  ~- :tlue or and evaluate E~~. 1 - ’
ron he ro~ni a i ng unkn own . P ( P 1 also . This  ppreach is n eat  but - not
v e r y  ~~~~~ r U  . ~ e need a met hod hot t or suited ~or mao~t i n c  ~‘om~~it — i t - t on.  Such
a :nt hc•i i s  doscr ~bod next .

e t ~
‘ s ’ 4  be ii  p ron’ r rat ional t\mct ion of the form

a

wi th  a s imple pole . 1S a). AThv i ously ,

A - ~~~~ ~ n)N(s) 
-

D( s ) 5 = — a  (x~ )

however • I ~ (s a)  is not exp l i c i t l y  1’actcred out of the denominator , an

~n dot e rmina t e  form will result. when s is set equal to —a (0 ‘O). To resolve
~

-

2

11
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this difficulty, without explicitly dividing out (a + a), use L’H~pital’s
rule :

A — ~~~~ + a)N ’ + N 
— 

N (- 1)— 

D’~ s) s = — i  
— 

D’ 
s = — a

where D’ dD/ds . Equation 1 treats all simple real poles and , since only
polynomials :~re invol ved , is ideally suited to machine computation using
“ncsting procedures.T’ Moreover, the same polynomials are used. for all par-
t ial fraction coefficient evaluations involving simple roots.

Next, suppose F( s )  has a complex conjugate root at s = —a + j b .  That is ,

F(s)  ~~~~~~~~~~~~~~~~~~ - - •  (2? )

• Clearly , —

[(a + a)2 + b2 J 

~~ 
= Ab + jBb . ( fm .)

s=-a+ jb

Again, an indeterminate form results if f ( s + a)2 + b2J is not explicitly
divided out. L’H~pital’s rule permits one to avoid the division Step:

+ a)N + [(a + a)2 + b2]N t ~~~’4~ - Ab + jBb ( 
~~

)
5 = -a+jb

or
-

• 

- 
= A~ + j B~ ( :~ )

— D

_ _ _  - 
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This simplifies to

B — i A  = ( n6)
s = —a -I ’j b

and clearly

B = 2 R e~~ r 
( 27) —

s = — a 4 - j b

A = —2 Im~~ r (28)
s=-a+jb

Other expressions can be obtained for multiple roots. For example , if:

fl(s) = D = 
(s ÷a)2 ~ (s + a )  

+ (~ 9)

One can show (see Appendix D):

2N’ AD’”
A = , B = -~~~ - — ~~~~~~~ ( 0 )

s= - a

Some illustrative examples demonstrate the simplicity of the process.

First , let-:

F ( s)  = 
+ ~ ; 1  

= 
-s + : + 1 (~~i )

s(s + i )  s’ -i a

There fore ,

~ s A B C -.
= 

( s + i ) 2 ( s + 1 ) s

3ince D ’ ~~~ ~ ~S + I and D ” = 6s + ~~ . D ’” =

1 :

4
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C = 1 (33)
s= O

A = 
~~~s =- 1  

= 2(3s2 +2s ÷ 
= = —i (3k)

and

B = 
2N’ AD ’” — 

2(6s + 2) 
— 

(—2)6 
- 2 (3 )D” 3D” 

~ = -1 
- 

6s + 
~ = -1 (3)(6s + 

~~ ~ = -1 
-

As a second example,

2 2 _
~ 2 _

- 

(s+1)(s 2+2s+5) 
—

= 
A 

+ B(2) + C(s + i) ( )
:1 S + 1 (s + 1)2 + (2) 2

Since D’ = ~s
2 + 6s + 7,

A —  
N 

— 
s2 — 5  

— 
~~~ — — 1- D’ s= - 1 

- 

3s2 + 6s + 7 s=- 1 
- 3 6  + 7 - (38)

- ‘ and

C = 2 Re 
~ 7

~s=~~1+~2 
2 (

~9)

B = —2 
(3s + 6)s + 

~~s=-1+j 2 
—1 (~ O)

Those readers with pocket calculators having rectangular to polar conver-

sion features will have little problem in verifying the coefficient values I 
- -

for C and B.

- iI~
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Thus far we have dealt- on l y w ith “proper” rational functions wherein

the ~)rdo r or the numerator polynomials is at least one order less than the

denominator polynomials . In the event F ( s )  is not proper , it can be con—

verted (using synthetic division ) into two parts — the first is a poly-

nomial in s , the second part a proper rational function. For exan~pie,

4 - + ‘‘5~ + ‘ ‘t) 4 14 ‘ + ,‘
- ~ + S -t 1 + ( 14 1 )

5 -  ÷ -~~~ 
4- (a + i)’ 4 ( i ) ’

There fore

t’(t) = ~O ( t )  + b ’ (t~ ~ ~( t )  + e
_t

[sin ~ cos t

We assume t he reader is familiar with Laplace transform of impulse functions

to the ex t e n t  that is recognized as an impulse in t~ ne, t(t); a is recog—

nisod  as i t  “doublet,” ~ ‘(t); 
ii td is recognized as a “triple t-, ” ~i ’

Before proceeding to the development of a table of z~transforms (in the

next section ’l , we pause to review the concept of the system transfer flrnc-

tion. Given

k 

f(t) ~~~~~ F(s) ( 113)

we presume familiarity with the transform pair (or re fer to Appendix A )

df ~t )  
~~~~~~~ 

s~~( s )  — f (O) ( 1414 )

which, through repeated applicat:ion, enables us to transform the differen- -

L t ial system

+ :~~ = r ( t )

in t ime to an algebraic system in

A B C

~~
— —

~~~~~~~~

-

~~~
--- 

—
~
-
~~

4 . 5 + e ’ ) X ( t’.) [~‘(s) -t ~tx ( 0 ’4  i sx (O’4 ~(ofl ( h t ’4

_ _ _ _ _ _ _ _ _— ‘1 . ._. _ - -- 
~~‘ 
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This equat ion highlights three basic parts characteristic of all linear
systems:

A: The part related to the system

B: The part related to the response

C The part related to the input and.
Initial Conditions

Dividing through by Part A gives

X (s) F(s) + 2)x(O) 
~~~~~~~s~ + 2s + 2 s~ + 2s + 2 s2 + 2s + 2

or

X(s) = W1(s)F(s) +W~(S)x(O) +W 3(s)~(O) (14~ )

W1, W2, and W3 are the “transfer functions’t (or system functions) which
relate the transforms of the output components to the transform of the
input components. For example, let the Initial conditions x(O) and ~(o)
be zero, Then W1(s) can be written as:

(49)

It Is in this sOfl3e that transfer f~net ion~ characterize the system inde—
pendently of the input . The Laplace transform of the system time response ,on the other hand , can always be expressed as a ~um of products of system
transfer functions with the Laplace transforms of the various corresponding
input time functions and initial conditions.

C .

An abbreviated table of transforms was built up in the previous section,
- starting with an exponential transform pair. Here a similar approach is
taken with Z—transform pairs. Let ~ e

sT for the purpose of constructing

I i ’

_--

- - ~~~~~~-f ~~~~ -~~ i~~~~~h- ~~~~~, 
— ——--. --—-—-- — - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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this table. Then the following equation may be regarded as the definition
of the z-transform:

fT(t) f(o)~(t)  + r(T)~~(t—T) + f( 2r ) 8+ ( t—2T )  + ... (50)
The Laplace transform for delayed time functions (refer to Appendix A) can

be used to transform Eq. 50 into the frequency domain.

- 
p(s) = F*(s) = ~~~~ f(nT)e

_
~~
T 

= j  f(nT)z~~ = F(z) (51)
n=0 n=0

where z = eST.

Some comments on notation are in order. We use fT ( t )  <=> F’~ (s)  to denote
that the time function f(t) is sampled. at 1/T samples per second. pT(s)
denotes the Laplace transform of the sampled continuous time function, given

that the continuous time function has the transform F(s). While the tradi-

tional notation for i(s), which is F*(s), is perhaps better established,
we have elected to use the superscript notation because it permits an expli-

cit statement of the sampling rates involved in multi-rate systems (the main

concern of this report). This point is discussed further in Appendix B.

Let us now proceed to develop an abbreviated table of z-transforms. Let

f(t) = e~~
t
, so that Eq. 51 becomes

fT(t) ~~ F(z) = ~~ e
_
~~
T z

_fl 
(52)

—aT —i — 2aT —2= i + e  z + e  z -t- ...

• /e T \ / e T\
2

* 
1 + I—I  + I—I  + ...

\ Z /  \ Z ~~~

= 
—aT —aT1— ( e  /z) z — e

1 
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We now know that this continuous time function sampled at 1/T samples/second
gives the transform pair

(e t)
T 

~~~~~~~~ z _ e T (~ 14 )

Just as in the case of the Laplace transform we can let “a” t ake on (~~ 1\’eIii

ent ccmplex values. For example, let a ~~ a + jb,

_ (a+ib)t
]
T 

_____________[e 
— e~~

Te
_j
~
)’1
~ 

(

or

(e~~
t 
cog bt — je~~

t 
sin bt)T ~~~ 

Z 
(H’)

5 — e (cos bT — j sin bT)
Rationalization of the right-hand side of Eq. 5~ 

results in:

- 

- 

(e
t cos bt — je t 

sin bt)T 
~~~ 

z(z _ e_aT cos bT) — jae~~
T sin bT

(a — e cos bT) - + (e~~ sin bT) -

There fore

(e
t 
~~~ bt)

T 

~~~ 

z(z~~~e~~~ cos bT) 

~~Ta .—2e cos bTz -t- e ’’

and

(0 T sin bT)T 

~~~ 2 
~~—aT sin bT 

(‘~R)
—2e cos bTz -~~e

We now have the transform for the sampled damped sine and cosine pair. Con-

tinuing, let a = 0 in Eqs. 57 and 58 to obtain the transform for sampled

sine wave and cosine waves.

I

• 
- -_

ii - —‘-- -—---~~~~~~~ -‘-—
,.- ~~~~~~~~~~~~~~~ 
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(s- -~5 ht)
T 

~ -:~ 
z(z — cos bT) (~~~

)
— ~

‘ cos bTz -t 1

(sin bt)T <~~ 
sin bT (tdt)

~
‘ — :~~cos bTz * 1

Furt her, let a 0 in  Eq. ‘d~ to obtain the z-transl’
orm for a sampled-unit

step.

[u( t) 1
T ~~~ I 

(i~ i )

To complete the table , firs t - t ’i !ILI the t rans 1’.’rm ot ’ tf(t.):

[tf(t) 1
T [nTf(nT ) 1 

~~ E 
(nT)f(nT)z~~

n O

—zT 
~~ 

f(nT )
n:O

We recognize the term in  brackets as the derivative of :‘~~ with reapeet-

to .~~ . Therefore

[tf(t) 1
T 

~~ —aT ~~ f(nT)a~~ —zT ~~~ F( Z )  (o r)

n-- 0

Equation is completely analogous to the s—domain result. (Eq. 
‘i. With

it , we can complete our abbreviated table of a-transforms, 
since

~te~ ’~ 1
T 

—zT -~~- ( ~~

dz \ z_ e~~T/

- •  
—aT •

—zT 
— .~1t (fl c) - -

— 0 — _
~~

________ — 
-
~~~~

-
~~~~~~~~~~~::. 

I ~)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~
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Setting a’ = 0, the z-transform of a ramp is obta ined:

~~~ = — 
Ta 

(614)
(a — 1)’

We may now complete Table 2, showing the relationship between time and
the s- and a-domains. Strictly speaking there should be a “f(nT)” column
as well, but the manner in wh ich the table is presented is  su f f i c ient . It
forces us to remember that f(nT) can be thought of as the continuous f(t)

sampled at intervals of T seconds starting at t = 0.

Given an F(z), one can expand in partial fractions In exactly the same
manner as was done for F(s). We will defer demonstrating the process until

the additional considerations introduced by data holds have been reviewed.

D. ~~YIB~ TRA~NS1~~ J~~ CTI~~S MiD DATA HOLDS

The correspondence between a given F(s) and the associated F(a) from

the transform table is depicted in Fig. 1 from the transfer function point
of view. From Fig. 1 and the results of Appendix B:

C(z) ~ T(.)J (cT(.R T(S~ 
0sT G(z)R(z) (6’~ )

b ~~~~~~~~

Figure I . Correspondence Between Transfer ~inction and
Pulse Transfer F~iucti .~n
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TABLE ~~
‘

2
AN ABBREVIATED TABLE, F ( a )  ADDED

t’(t.) F(s) = £ F f ( t ) ]  F(a) = Z[t~ (t)}, ~ ~sT

- 

~~~~ 
_•—•- --_,_. .—‘ - _________________

u(t ) —
s a — I

t. L Ta
( a — i )

4 T ‘a (a + I )
s

_ 
(
~-~

— I )  

— - —

I 
________

S + a —aT—

..ft ~~ 
I —aT

te I 
___________

( a ( — 0~~~~ 
) 

-

-

~ 

- - — - _ - ——— - — — - - - . — —--———-

I) - S ~n
S t ~~ bt - - -

- t t  ( — cos bT )• ~ ~ sin bT 
‘
~

~~~~~~ ~t• 
I 

s(:~ — eoa hT)

I) 
( s  — sos bT)’ ( in bT 

-

- •  --- - -----_
~~~

- - - - — -

— - - - . -
. ~~ I ~~s t n t ’t —, — - ‘  - ,

S - L ~ 
- 

t ~‘ — e SOS t~1’ ~ ‘ 
~~ S i f l  Vt’

e a 
~ i ( — ~~~~ ~T 

- -

- 

- 
L 

(s  ~
) 1’ — ‘

~~~~~~~ .‘s t’T~ is t ’i’~
’

( — .a’s t”[’ e~~
i ’I’ 

i n  bT — - ~~~~~~~~~ hi’ : ~

‘

Ic~i I 

- --—-- 

- •— - — - • -  — -_--—--~ _-_-- — — - ---— - - - 4



- - 
~~~- - _

~~~~~~~~~~~~ 
- 

~~~~
__z_ -- -- -

- ~~~~~
-

~~
•--- -- ,  

- 
- ---S

r ~~~~~~~~~~~ ‘%~~‘ — -
— -  

__ _

That is, ~~~~~ that G(s) is isolated by samplers (and it is in Table :‘),
t hen ~i(s) san be written directly. However, if G(s) is the product of
several of the tabulated functions of 5, then a partial fraction expansion
of t i ( s)  must be made before G(z) can be found. For example , if G(s) 1
t :~~~+

• 
G(~~) 

Ts 
(~~~)

— 1)

However , if G (s) = 1 -‘[s- ’(~ a) J , then

= j A B  ~~~JT

or 

G (a) - 4 

~~~~I 
+ _______

?~k’reove r , the situation depiete~i in Fig. 1 does not represent the form of
t h e  proble~it w h ic h  Is usually of  interest since no data hold is included.
The form of interest is shown in Fig. . -

.

In Fig. ‘
, M(s) represents the transfer function of a data hold. Using

th e result s of Appendix B, we can write

cT 
(GM)TRT (~~) )

Data
Hold

-~--,~ ~~~~~~~~

j

~~~~~~~~~~~~~~~
_

~~~~~~~~~~~~~~~

JE

~~~/ 
c~~~

Figure . Typical Data HAd Configuration
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The data hold is a phys ical device tha t takes the samp les of the s ignal,
RT, and constructs a continuous signal which in turn forces the continuous
system represented by G ( s ) .  It is convenient to think of the data hold as
a coupler between the d igital computer and the control actuator input . This
coupler is usually inherent in the digital-to-analog (D/A ) converter device.

We will assume that the reader is familiar with the character ist ics of
various data holds. (Their properties can be reviewed in Refs. 7 and 8.)

The presence of the data hold in a single-rate system is only a mildly
complicating factor. This is especially so if we are using a zero—order
hold which has the transfer function:

-sT
M = 

i — a  (70) 
—

For example, let G(s) = a/ (s  i -a ) ,  M = ( i  — e ST )/ s , then

(GM) T { ( l _ e ~~ T
)aj

T 
= [(1 - e~~

T
) (+ - s ~ a)}

T 
( 7 1 )

But , 1 — e 5T 
(a — 1)/z and is unaffected by the sampling operator. There-

f ore ,

/ tT
(GM)T = 

- — 1 
~~~~~~~~ — 

~Z \5/ \5 +a,

a_ l i z  
— 

z
— 

z k a l z _ e ~~ T)

—aT1 — e
= 

(72 )
~z— e  -

As we shall see, this simple computation becomes more complicated when
the data hold and input sampler are working at a different sampling period
than is the output sampler. This situation will be encountered later in
the analyses of multi-rate sampled systems . For single-rate sampled systems

-

~~~~ — - - ~~- - ..-~~ -- - ---~~~~-— ~~ 
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it can be appreciated that the partial fraction technique Is quite ade-

quate for computing overall pulse transfer functions (from the output of

a sampler to the output of the previous one). This result pertains whether

or not there is a data hold Involved , even though the data hold alters the I -

form of the answer dramatically.

Transfer functions for representative data holds are give n in Tah~ e
The dat- a holds of gr e at e st  I n te r e s t-  are the scm —order hold and t he slewe r

data hold. Their characteristics will he discussed at appropriate points i 
-

in the text- .

TABLE SOME REPRESFNTATIVE DATA HOLDS

DATA HOLD TRA.NSFEB F’JN~’PI0N

• —sT
• ore—Order 1 —

Hold ~~ -
‘
~

~‘irst- -Ordc r 1’I~ + ,
~) 

- -  — —

so ‘o t—O rde r -
~ 

A

Hold 
— .•

~~~ ‘ S -4 _
~~

Triang ls~r I - ~~~~

i
~
at  a noI~1 

- .
~~~

_

Slewer I~a~ a
h old I S l O W  T

E. AN ~ 4TBODUCTI~~ TO MULTI-RAT! SA~~ L~~G

~~u t i le  le n t ss .’cet.s of S i s~~1 o — r a t e  sampled Systems have been rc\ i

to t h p o i n t  that we nc~ now ~‘ons I der uis ly s I s  o t ’ a re st  m i s t - e d  ~-I aSs ol’

multi—rate sampled sy st e m s . :\ latsis multi—rate sampled Sys t em element- ot ’

1st ~‘rest is s hown i n  l-’.i

— — 
;—~
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Figure ~. Slow Input /Fast Output Sampling

It is required , in Fig. ~~ , that N be an integer so that. the output

H sample rat ’ is N times the input sample rate. Write the output equation

for t h e  cost i nuous variable C as - 
-

C GR’~ ( _ •
_

~~~)

so that-

~T ~N 
= IG RT 1

T /N 
~~~ i )

To further reduce Eq. ~. , we merely notice that Fig. ~i is equivalent
an input— output sense 1-s Fig. ~

- . The T input sampling operation in
Lig. ~ Is replaced by two sampling operations which are equivalent to the

C Tm

T T/N L.....J T/N

~‘L gure ~~~ . E q u i v a l en t  Mode l for 
~
‘jp. 

~

or i ~zisa 1 one. The time funet 1 OSS [R T 1T N and RT ire obviously equivalent  .

si nc i ’  t h e  ~nt ermediate samples of the new • hut fic t i t i o us , input [RT 1
T N are

• so re . This “trick” dot~ show that we may write

CGR T 1T ‘N GT “N [ET 1T tN = aT ~ R
T (~~

4
—5- - -.-~~~~~~~ ‘ !, - ,~~~~~~~~ ,
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which is the correct - r e su l t  (s~~ Appendix B). The rule is  for S:ullp J i : : ,
operat iOnS such as hess shown is Fi g. , that:

“The outer 5 tmpl - ~ 
opt ’ r a t or [. j~ 

‘N 
~~erates through 

• the
inner ones 1” ~a- 

r.-
~ I os of the I !lner sampling periods t o

the otz~ cm sampl I ‘-a per 1L\l , - r N • are in 1 e~ e rs •

Consider an cxanplc ‘imp 1 : tt ,  ~~~~ Let

r ç t )  . , 0sTN

Therefore

2I1 N 
)

r~N 
F ( t ~~~

L N

Re f e rr t  ng t o  Tah1~ 2, writs

1,T N  
— ~TN ) (:N _~~)

Note the  import -ant - points . Since isi s been defined •
~~~ ~ ~

ST, N the

pulse tran s fer function corresponding t o  ~i 1 ‘ ( 5  + a ‘I ntis t r epresent

the newly defined sample period . P ‘N. More ’vsr~ the s-t ~-ans fo rm for
RT = 11T ( t )  must be adjusted to re flect  the resamplthg with period T -N.

This adjustment is also required by the fact-  t h a t  a is d e fi n e d  as LS ST N

as a result of the resampling .* The a—transform for ,H T~~
’/N ET iS

obtained in t~o steps:

• Obtain the a—transform for RT in the usual manner
with a ~ e

5T

S Replace a ~ 0sT everywhere it- occurs in RT( a) by
• ~~~~ (e sT N ) N

‘In 11 5 regard . some rea~icrs s igh t -  f ind  it helpful to read the review
material of Appendices A sad B.

- ‘5’

- ;~ ~~~~~~~~~~~ 
V
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~;uppose th e problem is to find t continuous time response which when

sampled results in dr/N for the previous examples . The use of partial

fractions now requires an expansion c-f the right-hand side of Eq. 78 into

N + 1 terms, since the denominator now has N -~ 1 roots. This is not a

pleasant prospect , especially if N is large, say on the order of 100 or

more. When N is large, partial fraction expansion is not the best way te

proceed . A recursion equation approach is preferable. Rewrite Eq. 78 in
terms of the i nput RT:

cT/N 
— ~~~~~ 

RT , a eSTtN (79)

Divide Eq. 5) by a and write the corresponding recursion equation.

a—aT/N 
~~~~~

_ , + R
~ ,N 

(80)

where

0 if Frac (n/N ) /0

-~~~ 
R~~N (f~~)

~ R(nT/N) if Frac (n/N ) 0

The notation is i n te~~ ret-ed as follows . Form the ratio of the

index of the r-~ -a r - i o n  ‘ Isatlon , n, to N; and take the fractional part of

the number tha t results . It’ this is zero, then nT/N is a point in time

for which an input sample is taken. However, if the fractional part of

this ratio is non-core, we are it an inter—sample time point for the input.

Consequently , no input sample is taken , giving a zero input value for this

• sample point in time .

To illustrate , let T = 1 ~
_.uT 

= O.~ (a ~~~~~~~~ and compute the

transient response to a unit step input using

- U
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(5. 
~~
T/N c +RTn - e 

n-i n N

where

(0 Frac (n/N)/O

R
~,N = (83)

( 1 Frac (n/N) 0

The transient response is shown in Fig. 5. Notice that the absence
of a data-hold circuit forces the continuous output to be comprised of the
sunimation of a train of weighted impulse responses of the first-order sys-
tem i/(s + a).

The following is accomplished by implementation in terms of this recur-
sion equation:

S The inter-sample response can be computed with
any desired degree of time resolution desired by

I’ increasing N.

• Computer storage requirements are unchanged as N
is increased. The order of the recursion equation
(i.e., the number of states) is not affected by N.

-aT/ N 
÷ R~~~’ R~~ ~{? ~~~

01 

I ; 10T .5 ; N~~IO

~ii t11r . ~. 3t-’~p Respons”
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F. SLOd 11~P(7~/FA8T cx~rw r
WiTH DATA HOLD

The inclusion of a data hold In the slow Input/fast output sampling

problem introduces an additional consideration. Adding a data hold to the

block diagram of Fig. ~ gives Fig. t~~. The output equation Is

f cT/N (GM)Tm RT (~~~
)

f
where M represents the transfer function of’ the data hold. It Is important

to notice that the data hold is configured for a T second sampling period,
whereas the sampling operation on GM is for a T/N second sampling period.

An example will demonstrate the nature of the problem.

Pigure .,  Slow Input/Fast Output Sampling
with Data Hold

let.
p

—sT
M , G 

a 
:1 

sT/N

‘I’h ‘re fc ’r s ,

—sT T/N
, ., 1 -N (1 — o ~a

~GM 
~~~ 4 a’)

.1

-

H
- —~~~~~~~~ ---—-—--————-— 

-



Since z e5T/N, it follows that

e~~
T = e T/N)N = ~

—N (87 )
and

—sT 
_ _ _ _l — e  (88)

Ia

Moreover,

a 
- 1 1

-~~ ~~i -4- a) 
- s s + a

so that the transform table gives

1 \
T/N 

- z z 
— z (1 — e~~

Tm
)— 

s + a/ z — 1 
— 

~~~~ e~~
T
~~ 

= 

- 

(z — 1 ) (z  — e~~ThT~
’
)

There fore ,

cT/N = [5N — 1 z(1 — e~~Tm) RT (90)zN (z — i) ( z  — e~~T/N)

or 

cT/N 
= = :~ 

(~ ÷ ~~~~~~~ + + -(N-i 
RT (9 1 )

• Comparing Eq. 91 with Eq. 79, it iS Seen that the inclusion of the
zero-order hold has introduced an additional multiplicative fttnctiont

(1 — e~~
Tm) ~

N — (i — ~~~~~~ ~i + ~—1 + ,•~ + 5— (N- 1)
zN(z_ l )  Z

30
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Methods for treating this  additional complIcation when N is a given large
number will be discussed in Section IV.

G. FAST ~~~~~/SLW ~~~~~ sAIeLmo
The next funthunental multi—rate configuration of interest is the fast

Input /sLow output sampling configuration of Fig. (. This presents a more

Involved situation from a computational vIe~~ oint than does the slow lnput/

fast output ease studied previously.

~~~~~~_../ 
R T”

J N G
1/N 

_ _ _ _  L I I

Figure ‘ . Fast Input/Slow Output Sampling

As always,

= 0~~ T/N 
(

k) ’)

so that

cT = [G~~
T/N 1

P

In Eq. ~~~, the T operator can no longer “operate through” since the
ratio of’ the inner sampling period to the outer is not an Integer. However,
i t  is legitimate to replace Fig. 7 with the equivalent block diagram shown
In Fig. 8.

~~~RT
~~~ N 

~ 
G_k N I  

CT

Figure l~. Equivalent System

‘
U I -

~ 
- -

k &~~~~ .. - - ~~~~~~~~~~~~~ 
-



____________
~
“

-

~ 

—
~~~~~~~~~~~~~~~~~~~

-
~~~~~~ 

- - 

~~~~~~~~~

It is readily apparent that the output CT is not affected by intro-

duction of the “phant om” T/N sampler, since the T output sampler reject s
all the unwanted samples of cT/N . One can write the foliowing equation

directly, from Fig. 8,

• 

- - 

CT [GMRT/N }T [(GM)TmRT/NIT (~~~)

On the surface, this exercise does not appear to have been too fruitful,
since the T operator still cannot operate through. Nevertheless, Eq. 9L~
offers a significant computational simplification. This is so because the

following routine procedure can now be followed:

• Compute (GM) T/N and RT/N i-transforms in the normal •

manner, using z ~ e
ST/N .

S ~~~and the produc t- [(GM)T/N RT/N J in partial fractions
an d use the transf orm table to find the continuous
time function which, when sampled with period T/ N ,
results in [(GM)T/N RT/N ]

-
‘ • Find the z—transfcrm of this sampled continuous -

generating function, for a sampling period, T, :i-nd
z ~ cOT to obtain:

[G?~~T/N]~

This process is in the spirit of the c.m~ o l.ut i on  approach described in

Appendix B. The main difference is that we ivoid t h e  use ot ’ a

m yers Ion integral by subs t- it - ut - :i~~ the proc’eduro o 1 ~oi iig t h e  a — ~io ma in
[‘or a T /N sampling pen (51 ( i . . , w I a ~ 5sT/N ) to the t ime ~io ma in :tnJ then

back to the a—domain [‘or :1 T sampi lug period (i.e. , with a

- S Notice that in the previous sect ion .t’or the slow input- / fa st. output-
problem, It was possible to s ’p: rate out the transformed input from the

pulse transfe r f \ inct i on for t h e  system. Having done thIs , it is then pea—
sible to wri te  a re ’urs i o ~ • ‘,1 ii :tt . ion in terms of an arbitrary input . h ere ,

a recurs ion e~1uat.i on [‘or -‘V L .1 ‘~ntt ion ol’ Eq. 91t ~ uu~ot be written unt i l  a
spec i fic R is given • ilst t is , tti ~ recurs ion equation for CT must- be found

on a o : i ao — I ’v— e - i s ’ b- (~ - , N . - ~‘ ‘  rt  ho .l es s , [-lie baa I ’  method ~iese r I bo~l in th.i a 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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subsection will be valuable later for analysis of multi-rate closed-loop

systems.

An example Illustrates the computational method. Let

—sT/N

G = s~~~a , M = 
i — c  

— , R = sin bt

Fi rst , comput e (GM)Tm z-transform. This is straightforward, since the

sampling operation on GM and the data hold are for the 
same sampling period,

Tm. Then obtain RTm (Z )  from the z~transform table , and form the product

[(GM)T/N RT,NITm .

(GM)Tm = ft ~~:~~~~~~~
l

Tm 

= :~~ 
, Z 6 CSTm (~~

,) 

.
5

The refore ,

(GM )T /N ET /N = 
1 — e~~

T /N a sIn bT ~~~ (
~~ ~

-

z — e~~~~
N 

(a — con hT/M)
2 

+ (sin bT/N)’

~ cpand in 
partial fractions:

(GM )T/N RT/N

- 
Az 

+ ~a sin bT /N + Ca(a — eon bT/~~ ~~
- 

a — e~~
T/

TN (a. — cOS ST/N)’ (sin bT/N)’ 
- ‘ e

Compute r ( t )  ouch that fT/N ~~ PT/N

f(t) = Ac~~
t + B sin bt C coo bt (oo )

I

-5— 

5 -.5- ’ 

- -
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‘I
Compute ~‘r

FT = [(~~~)T 
1N RT/N I

T = A~ + 
Ba sin bT + — con bTi 

, es”
a — c  (c. — cos hF) I (stu bT~

i~ o)

Notice the clear resemblance of Eq. ‘)~~ to Eq. 100. The on ly ~h 1 f t ’ei ’ence
is that- T/N in Eq. 98 is replaced by T In Eq. 100. ThIs emphasiaes [-hat the

Intermediate step of computing the generat ing time t\tnet-h-on Is merely a cost-

venient conceptual step which may usually be skipped in the analysis of
single—rate systems. Howeve r , In a later sect ion we shall set’ that exo.’u—
t ion of this step can b~ quit c use t’ul in  sort Ing out de 1nye~i t inc fun ot I .nis

arising irs the analys is of closed—loop multi—rate systems.

To complete the example , it may be ~-e ri f led that :

A —{‘ = A0 sin hT~ N ( l O I s

~~~~~~ ~ 
,~.aT 4~ — os bT N l (I ~~~. 

‘~

~the re

i — c
—~~

(e~~
’ — (‘05 bT ‘~N

’t (sin bT/N ) ’

H. ~~~TOR BWCK DIAGRA~~

S As noted in the introduction , one object ive Is to present all r e su l t  s
- 

- - 
in a vector notation which is compatible with either degree-of—freedom or
state variable problem formulations. For example , consider the hlo~k
diagram of Fig. ) wherein the dimension of’ t h e  ~ and H matrices are corn —
patible with the dimensions of’ the C and E veetors. Ont’ can now develop

equations and pulse transfe r functions for th i s  cloned-loop system In an

orderly manner.

_____________ 

j

— — — — — —
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R

1

L/ E
~f j

I L H F I I

Figure 9. Simple Closed-Loop Configurat ion

E = R_ H G ET (10I~)

— so that

ET = RT — (~~ )
TET (105 ) 1 -

Thus ,

ET [I + (HG )TJ~~ RT (-1 06)

Using Eq. 106, write an equation for the continuous output vector C:

C G[I + (p~)T]~~ R
T (107)

One can now conceptually add a “phantom sampler” at the output C and obta in

cT/N GT/N[I + (~~)
Tf’lRT (108)

by using the results of Section II-E. Thus, values for the continuous out-
put C can be calculated at as many inter-sample points as desired.

Cons ider another example. Suppose the open-loop plant is formulated in
the first-order state variable form

X F~c + G u  (109)

y = lix (110)

35

__-- ~~~~
-- - - 5.-—--  _I

- 

~0.
5.- ‘—5.- —.5— — --~~~ ~—-~~ - - 
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where x is the state vector and y is the output vector. F, G, and H are

constant matrices of appropriate dimension. Laplace transforming, we obtain

X(s) = (Is — F)~~ [GU(s) + x ( 0 ) ]  = A (s)U(s) + B(s)x(0) (iii)

Y(s) = HX(s) (ii. )

In Eq. 111 , x(0) represents the initial condition vector.

The open-loop plant, given by Eqs. 111 and 11~~, might then be embedded

in the closed-loop configuration of Fig. 10 wherein W 1 and W - represent 1 

-

compensation matrices which may be selected to achieve closed-loop design
object ives.

Suppose the objective is to find an expression for the (continuous l

state vector x . First , write

U~ = W~R~ 
— w~ w~ [i-mx (0) + 

T 
1
T 

(i 1

or

W

~
R
~ 

_ W ~w~(r~~)
T
x(o) -w ~w~(HAM)T U~ ( 11~-~

There fore ,

= [I + (W~W~)(HAM)
T r ’ [W~~T 

— W~
’W’
~(HB)

T x ( O)  ( i i ’~’)

R E 
_ _  _ _  _ _  _ _  _ _ _

Figure 10. A Representative Closed—Loop System

- - - - - -
‘~~~~~~~ ~~~

- -



-—- ---5 ---- —_---- — .5-- -- -—------
~~~ 

.::-
~ ::I:T- : 1~~T ~~~~~~~~~~~~ ~~~~

—
~~~! -

Thus , Is a ftnctlon of’ the input vector R and the m i t  lal c o n d it io n

vncter x((’~ .

To f’in~l the cont i nuous state and output variables, x and y,

X = Bx (0)  AM5J’~ (i1 ~-l

Y = l{Bx(01 + HAMU~ = ~bc (fl71

rh~- inter-sample response can be determined to any desired resolut i on:

x
T ’N 

l~
Tf~

N x (i) (AM)
T N 1r~

B
T ‘N 

~ ~ 4 (AM ~~~~~ N -
~ r (W~ W 1 

~~~~ )
T 
~~ Ew~ R

T 
— w~ w~ (HB )

T x (0)

(ii ~~) 

r - • t r.~~~tisi ~t ii t c~~- c-u’ t’ has been taken to develop all

1 ~ vect - ‘r uc t  - i ~ ~ . -r , ev en  t ough most of the i l lus t rat ive examples

are s. ’u.lcu’. Note that  t h i c  t r m s f o rnt domuin notation is applied just as

“icily t.e st ut.e vector problem t’ormulat ions as it is to degre e— of—t’reedoni

t ’cs~a-t lat. ions .

I. ~~~~~ DEcC~~~ ITI~~ C~~CEPT

The phantom sampler :ipp ro:sclt waS m t  r .’.ln ~’cd 1:1 ~‘ect io n Il—C in connec—

with the f as t  ~nput  1 cw cut put c unp 1 lug  t’cnii~ t- • Now that. vector

:~ S .‘n bus been Ii scus sed ( ~ ‘ct- icr IT —Il l  , we arc’ aSic’ to present. an

u 1 ‘ e rnat.i vt ’ description S l~u I in c  1 nd ’s S he phantom san~~ler us well as tin’

“T ‘N” ‘prc:l ch t- reuSed e ir lIt ’ r in ~l c& -t . io n II—~
’. This alternative approac li

c i  1 .1 eti “Owl t.cli let’ ,~mpcs it ion ” (R et ’. - I .

ess ence , swi t’h .lec. ’mpcs i t  I e~~. I. ’ a procedure wherein cy st  ,‘ms l i : tv i  ng

~-ai It i p 1’ samp l lug ope rat- ion s  ( - .‘curr I n c  - t t’lxod but. unc lisal sampling in ter— - -

v’t i , but wi th  a s:unpl Ing pat t - -rn wlii ch is r~’p~’ i t  ‘d ove r :t f I xe~l . l’i nit t ine

u t - r i  I ) ar ’  oonvt’rt.e t it1 t~’ u - . ; t i  l v . - t i , ’nt -~ M5~ i C ’ sample rut-c fo~~n. As on —

n-i I ly nt rc~hsced by Nr iuc , t b1 ’ u-I h o t  u c e l  - t cuming pe n t  net  n’de.l ogy
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I - 
- re- . - ‘ I .‘ be extremo l:,- cum bersome wli .-rs the ratios cf the sampling

r I - I. ls~’- -~sr- ’ h i g h . - - -‘r It i s reason is - i d - 11S0 because evolving state tr an—

~~! jo~ ~ - - t  b r . f . r ~~~~~~~~~~ t - ’n i j ’ 1~— t ’  r ich trarisf’orm m ct h . ds in t ~- th e back~roust I ,
• ‘ e r ’~ - S i  ‘t  f - I - 

- Ii i s ’ . However , t~sere i s  m u c h  to recotrnnend the switch
i - ~n~’-~si i . ’. -c - - -

~~~- t for use tsr both t irne domain and transform domain analy—
c . I ’ . ‘s - ~~s c - I  ions thr: ~t. ~‘o1low we wil l  review the basic concept and

r -~m- -v- - S -
~ i - r  r ‘~ ri ~ ions by r ecast ing it in vector form . The vector

for ~u - - I tIc s :t ri x i-I . ‘c~ I I  igr run manipulat i on for multiloop, mult i—ra te  .5
s .rc - . - : : - ; - , 5 • - i s  we shrill Jet ’, the dimensionali ty of problems for—

u - a l -  -is lug t h is -ilmrc i ’h1 cast present a practical limitation.

3. ~~~~CH D~C~~~OB~~I~~

:-‘-o l I - r  - - cos t H-n-cc c i ,-tt’ i i shown in Fig. 1 Ia to be samnplc i at
A 

~i~p I - c  ~~c ’~~~ I . Tb Lr r~-cul  t s I ’  t h e  sample sequence shown in Fig. J i b .
1’h ’ c rtn m L~ .l values tsav ’ been mu~hered for easy refer ence .  Suppose now we

Ic In - c5 - s r t  nrsous s gstai w i t h  a sampling period , T. This results in

the srtmplc 50-  t i e r  ~‘ - costs I t i s - sc at’ 1 , , , 10 , 1 , . . . shown in Fig. l i e .
fle t’i Ut ’ this sample st’.pn’nee to be

Next , advance the continuous signal R by T - ‘~~~ . Then sample the advanced
signal with a sampling period , T. This results in a sample sequence con-
sisting of . ~~- , ~~~ , 11 , 1~i , •.. shown in Fig. 111 . Define this sample

sequence to be (e d l’ ’ R ) T . Finally , advance the continuous signal R by

- T ‘~~~, and sample it wi th  ri  sampling perici . T. This results in the sequent ’e

consisting of ~~~ , tj , 9, 1. ’, 1’ - , ,.. shown in Fig. He . Defi ne th i s  s i gn a l

sequence to be (e oT - R ) T

The significance of the switch decomposition concept resides in  its

ability to provide an alternativc expression for the original sequence ,

RT/3 This alternative expression for RT/3 consists of the sum of RT ,

(e 5T~~~R) T 
, and (e 5T/~~R) T each delayed by a time interval corresponding

• to the advance.

RT , / = RT 
+ ~~~~~~~~~~~~~~~~ + (e 5T

~~~R) T c
_ 5 T

~~ (n ~~)

Eiuation 119 has r i  simple factored equivalent which is the product of two

vectors and the scalar , B , I ’
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12I
I 1 4 9 f lO f l I  ~~2

15 46 17 4~

c ) R T

10 13

7

d ) (e hT’3 R) T
4 2 

f t  f 14
.5 18

e)  (e 2
~
T13R) T I

9 12 IS

6

Figure 1 1  . Decompos it- I on of a Sample Sequence
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RT/~ = 1 e~~
T
~~ e~~~

T
~~ J 

{ F:::~] RI 
(110)

= w(w ~R) T 
( i~ i )

where

W A 
1 e~~

T
~~ e~~

5TR J (12-fl )

and

I 
~

_ 

I

A sT/~ (12~)

Th is ~~sult can be generalized for any major sampling period , T,
which is an integer multiple of the minor sampling period . That is,
whenever

T = N (T-’N)

vhere N is a finite positive integer and (T ’N) is the minor sampling
period. The result for arbitrary positive N is

R
T N 

= w(w ~ B l T 
(i -1, 1

where

W - W (sl A t~ 
,~~T’N e

_
~
5T
~~ e _ 1lc T h/

N I (1 ’ -)
-

~ m d

I’. = W,(c ) ~~~
‘ (—c ~~ (1 :~s~

Itt Fl i . 1 ‘s’ , the  prime denotes a t.r-tsispc . ’. . 

-

:- ,

—
.5 I ________ 
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• Further generalization allows R to be a vector of continuous signals.

Equations 1 21k and 125 continue to apply. It is necessary to define a least

fc common sampling period, T, and a greatest common subinterval, T0, with
- respect to the R vector. The p elements of R may be sampled at different

minor sampling periods: T1, . . .,  T2, . . .,  T~ , respectively. It is further

assumed that the minor sampling periods are such that a finite positive T

exists such that -

T N 1T1 ... = N1T1 ‘.. = NpTp ( in )

holis for a set of finite positive integers :

N1, ...,  N1, ..., N~
fi

The minimum T for which Eq. 127 holds is the least common sampling period

(for R). A subinterval can be found for which

T I~T0 (128)

\j 
and N/N1 is an integer for all i = 1 , 2, ..., p. The largest value of T0

I satisfying these conditions is the greatest common subinterval (for B).

Equation 128 defines N for the greatest common subinterval. GIven values

for N, N1, p, and T, the p x ~ N1 block diagonal matrix, W, is

0

- W = W ( s )  = . . (129)
- Wi

0 
..

Wp

where

WI = ~i ~~T/N1 ~~
5(j_1)T

~~1 ... e 5 1_ 1) T
~~

j
~ ( i ~~o)

-

ii i •
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The operator matr ices W and W~ can be used to represent multi-rate
sampling operations in terms of a single-rate sampling operation in vector
block diagrams. This is illustrated in Fig. 12.

Consider an example. Let B be a vector with three components. Let
the first component be sampled with period T/6, the second with period T/3,
and the third with period T/2 . That is ,

= [R~/6, ~~~~ R~/2J (i~ i)

The otjective is to compute W in order to obtain an explicit expression for

R* via Eqs. 129 and 124 (which is equivalent to Fig. 12b). For this example,

P = 3

T is the least common sampling period

T1 = T/6, T2 = T/3, T3 T/2

N1 = 6, N 2 = 3 , N3 = 2

T/6 is the greatest common subinterval

N = 6

Therefore,

1 , e~~T/6,e~28T/6, e 33T/6, e’~~T/6, e 53T/6 o o

w = o 

— 

i , ~~~~~~ e~~
T/6 0

o 1 , e~~~~
16

(i~ n)

/
This example gives us some insight as to how increased dimensionality can

complicate problems in practical application. Consider the vectors B, R*, - 

-

and (W~R)T. These vectors have 
~~, 3, and 11 elements , respectively. The

vector (W~R)T will have p~~N1 element s in general; whereas B and R will

only have p elements each. This is signif icant in that analyses will tend

~42 j
I 
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4 —“ _______ denote vector
* multi -rote sampling

a) Vector Block Diogram for
Mu/il - Rote Sompllng

-‘1 
_________ _________

R~~~~~~

7

~~~~~~ 
~~~~w ] ~~~~.r

b) Equivalent Single Sample Rate
Vector Block Diagram

I”igure 1 ..  Vector Block Diagrams for Mult i -Rate
Sampling Operations

t o  he conducted in tei~iis of vectors like (w~R) T in distinction to vectors
like R~ . Consequently, the potential  for expanded dimensionality in con-
nection wi th  analyses ot ’ multi-rate sampled problems .i s great. For example ,
consider a problem wherein there are two minor sampling periods , ~ ) ma and

ms . It is easy to verify that the dimnensionality expansion factor , N,

.15 l a O .

Fortunately, minor sampling periods which are so li t - ti m ’ different. art-

no t usually o t’ practical i sut-eres t . I”urtliormort-’, i t  is important t o  stress
the t’act that the increase in dimnensionalit.y affects i nput and output vee—

t ort ; , but I I, lees not. aft’ect the dimens I on o t ’ the system state vector .

On the more positive side , matrix operat ions are routine . Consider

the system shown in FIg. 1 ~ • Once the vector multi—rate samp) .1 ng ope r smt . .i om it ;

1mm Fig . 1 ~;t have be -n replaced by the sw.i tch decomposition equl valc’nt

Fig. 1 -cb ) , analyt i cal ‘titus i pui.1 mitions are rout. lim e :

(w l~R ) T 
— (w i~ 1 ) T (w .~~1 )T F~ ( i~~~

- - 
-

~~~~~~~~~~~~~~~~~~~~~~ 4
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( a )  ( b )

Figure i~~. A Multi—Rate Closed—Loop Systems

There t’ore

+ (W 10 1~~~
T(w~~Gw 1 ~TJ— 1 (~~1~ R ) T (i~~~)

- t imi d
I T N  T N TX GW 1 E1 or x (~~~~

) E 1 (1 - - . ’)

Notice that the dimension of the inverse in Eq. 1z ~I i is determined by the

soluxnmm dimension of~~1. If this dimensionality Is high, and If the column
dimension of W 1~ is lower, then we can develop an alternate equation having
lower dimension . the alternative equation is in terms of the X~ vector.

The dimension in  this case is determined by the column (limnension of \~~~~~~.

4 + (W~~~w 1 )T (w l~ I~~~)Th 1 (w 2~~~ i ~T (~~1 ~R ) T ( i - ~~)

X Gw l i ( w i.R ) T (w 1~~w : •~’ x~~ ( i~~’)

‘N 
= 

~~ 
~T N 

(W 10R ~
T 

— (W1 ~~~~T1T (l ~~ )

A more concrete scalar example is shown In Fig. 11i . The objective is to

develop t h e  pulse transfe r ftnction relating ET and RT.

..1
~ ~~~
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w J , e 5T
~
l2I T/2 Sampler

Figure i’~. A Scn,lar Two-Rate Example

To deveJop this pulse t ramis icr fu n c t i o n  • start by wri t I ng tin o~ i i ; m t I on
t ’or FT 1n te rms of RT tfl(j ET. 

-

= RT 
— J i ~~e l 

(i , e
~~

;1
~1 ) J T F ~~~

1

)(1 
_~~_sT

)J 
FT 

( i L; )

Coe t ’ t ’i ‘i omit s ot’ like terms in Eq. 1 - .) are collected . Next , t im e  var.i otis
t’;u ’t - ors are expressed in terms ol ’ the t —t . r ;msss f o rms  for sampled time t\mnc—

.5 t i one which L ’orr ’spond t o  t hst ’ i~q~1 ace t r a i t s  I ’ormt ; ins ide each or  1h ~’ stuim p i I
opt -r at e r s , ( . )I . The r - : i i i t .  i s  t - Ii~ m i s m p l i t ’ i t ’ Li t.o oht - :~ in

i -+ 
— 

‘

~~
- 

- 
F •

~~ • ~~~ FT 
, ~ 5T ( 1~~~

(s  — 

-

Iii- i’’ t ’o r ’

- 
• 

- I -  - — 
- H 1 I

(L_ .. — )
~ 

- •

— ~- - - .5
,
- -.5 — - -- .5— . -.5 _
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Once E’1’ Is kmiown as a funct ion  of HT , it Is a simple task to compute the

equat ions for the two continuous states:

(I 
—

~~~
‘
~~ ) E

T ( i 4 ~~)

auL-t.

—sT- .’ ~~T 
T/2

= (I_ e  
)(‘

—

~ 
) FT (il)

- - h owever , not e th at i t  was necessary to consider terms such as

1;T(~~ I i ~sT L esT/21 (1~~t)

iii .-rLtex’ to ~-t~t mm the s—transforme d functions required for Eq. lt iO . Thus

mm mne ttmod t o t ’ oht mining s—transforms for functions ol’ this form is needed it

t h is po :iim t . An approach using the so—called dvanced s.—transform is pre-

sent e~1 in t ho n ex t  smibsect ion.

X. ADVANCE z -TRA1~S YO~~~

Mn tri x ew it ch do L ’Omn ~ OS I tion requi ct-s the s—tran s - fo rm o t~ i\sncti ons

- 
- 

ad v:mnced i n  t ime  tty some t’ract  ~i ems , .~~ , o t ’ the .1 oust comnmnon sampling period ,

T . ~‘~tr examup it ’ ,

- 

- 

t ’~~ - e~~~ 
~~~~~~~~~ 

, ( t  1 AT~ ~ (t 4 ’I’~ (i~i ’ ~

i~y -~it~t’Int t i.~n ,

i: ~‘
‘
~~~ 

ms~~\~T —a

ml 0

-a ’  me’ im : t~ Wi’ i t ’

• 
-.5

~“lLU1’ , t1 (i 
~( )

m m 0

.•

- - - 

-
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The i n f i n it e  surwnat ion i~ rem ’ogmmIs~’d 
to; a geometric progression which

can he expr~-s SeLl jym closed fo rmn . Therefore ,

~~~~~
—~~~ for 0 .\ <

Equat ion 1~m~ cams be used to generate a table  of advanced s_ t ran sform s in the

same manner is t h e  - :—transl ’ormfls of e~~
t wer e  used to generate a t able of

ordina~~ 
s— t runs forms lit Soot - ion u —c.  Thus , we can let the ~~ rameter ~ in

Eq. 1! ~ t sko on new ~‘a toes t o  ~nio c it-c new n t - r i  ott for t ime table.

a a 4 ii’:

_____________ - 
~~L\T ( cos ~~~ — 

~ sin ~~~~ I

— (u - I I~~~ ~~mT 
. . 

(1- ~~
— c ‘ — , ‘ (sos hT — sni hT)

Rat io f l i l l i se  Eq. i~ ° by mult i p l y i ng  numnerator and denominator by the complex

conjugate of the denominator to obtain t im e 1 ate i~ CLl I at-c re sult - , F i (s ) :

F (‘) = 
ze~~~~

’ [eos b~~ — j s-i n b~~~ [( s  — 
mT sos itT) ~ mT hT~

- -  

15_ 0—aT ~~~~~~~ bT) 1~~
tT 

~~ bT1f (s_ e~~
mT sos bT) — 

•~~~t’1’ s i n  hTI

Multiply l r.g out f- t im ’ facto r and e qmma t -  I ng real and imaginary part s g I

i t ’t - e r a small amount ot’ t r i gonometric manipulat ion :

e~~~
t
~~~

) (cos b(t +~~
) — j  em b(t +~~

) ~~~~ l~~~~Z — ~~~~~ 
cos b( 1 —A)~j

— ~ —aT coa bTz + e”~~

— 
j~e~~~~[oin ~~ z + sin b~~~ t —~ )TJ

— cos bTz + e~~i
~
’r

This is  the  advanced s—transform for the exponentially damped 005 time and

s l i m e  wave S .

~~~~~~~~~~~~~~~~~~~~~~~~~~
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Next , let a = 0 in Eq. l t 1 ~ to obtain the advanced z-transform for mm
uni t  step funct ion :

= ( i ’~o)
Z — e’~~

T limn —

;m-~~0

This states the obvious fact that a un i t  step, advanced by ~~ seconds, has
the same s—transform as the step function itself. Next, consider the
r,— t r m - tnsform of the t ime function :

H (t + 0~~t (t~ L~~) e~~~~I’(te
_ tu 1 

+ ~e~tI (i~~i)

since we already know the s-transform of each individual term, a straight-

fo rward computation results in:

+ 
z~~ — ___ 

ze~~~~[~~~ + T( 1 —A)e~~
T

J (~~
, - )e 

—t iT - —aT —aT ~2 
- -

( s — c  ‘ t — e  (z— e ,,

Similarly,

(t + ~~~)~~e~~~
(t ~~~~ ft + ~~Tt + (~~~)~~)e~~~~~ [e~~~

t
] (i~~~) 

-

~ -

leads to the transform of the remaining terms needed in o~~er to au~~ ent
Table wi th  an additional column of advanced z-trausforms . Table 4 is an
abb revia ted tab Le ~hat is sufficient- for the purposes of this report- .

L. A CO~~ARISON OF VE~~OR SWITCH DECC~~~SITION
MD T1~~ PHAN~~~ SA1~~LER

We are now in a position to compare vector switch decomposition and
the phantom sampler . As already noted , the case of slow-input/fast-output

- - 

sampling poses no conceptual difficulties (re fer to Fig. i’ - ), since

cT/N = [G~~T 1
T/N 

- fGM IT/N {R T 1 ( l - ~ )

S 48

- - - 

- 
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F’igure 1~-. Slow-Input/Fast-Output Sampling

Thus , the output C~ ~ is represented as a product of two factors , one of
which describes the properties of the systemmi and the other describes time
i nput. Separation oX’ system and input charac ter is t i c s  is  cruc ia l  as fur
:ts ‘O i toep t tm:mi  c lose d— icop man ipuiti t I ens :1cc comicermie d. i - or  exumaple , it. i s
necessary for t i l e  USC of signal f low graphs , block diagram algebra . ct-c .
The st -ut -c  of affairs is s~ newhat different for the fast—input/slow~~utput
san~ l ing case shown in Fig. I ~~ . The out-put in Fig. Ic’ is e.xpressed as

= [GMRT ‘NJT f(L~tmI )
’l’ N pT -‘N 1

T 
~~~

-
~ R_~,, GM 

c_~~,__

CT

I/N I

Figure in . Fast-— Input- /Slow—Out.put Sampling

where the extreme right-—hand s I do is ~-bt n. limed by it s i rig the ph os mi t om sampler
‘o nc e-pt - (Eq. 0. ) No simple product- factor I sat ) ott for Eq. 1’ - ‘ ‘ in  ‘ a cyst em

pulse tra i t s  fer t\imm t ion and a trans form ci ’ t he  input - signal .15 apparent
While roc t r sw it oh decompos It Ion depicted is: i-i g • 

- -
. prov 1 ~It’~

; t im - scughit- —

~‘t~’r i’r~’- ms mc~ t ’:mst o r  -at tot s • t - ) i i  5 i s  :I t -  t in’ expense of to m i ‘isr ~’as~’ i i i  t h e
‘t est s ien:tl i t  i -~~~~ t in’ prim l oin s .i msc ~—

w i ’  ( l - - t - \

I-
-’

- _________ 
- - ____________

‘ - - - — — -.5---- -—
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Figure 17. Vector Switch Decomposition Model ;
Fast -Input/Slow-Output Sampling

Specifically, the row dimension of [W~RI
T and the column dimension of

[GIVW 1T are N for the fast—input/slow-output sampling case in Fig. in .

On the other hand, if G(s) and R(s) are known prescribed functions .

the evaluation of Eq. 1~ 5 can be carried to completion using either the
vector switch decomposition or the phantom sampler concept.

Consider use of vector switch decomposition for analysis of the slow-

input/fast-output sampling case (Eq. 1~~4 and Fig. i’~’). The equivalent

block diagram is shown in Fig. 18.

= W[W~G~~TI
T 

= wtw~GM I T RT ( i ’y~) - 
-

Not~.ce that system properties are separable from the input as is always the

case for the vector switch decomposition formulation . Also notice that
from an input/outpu t viewpoint [i.e ., considering (W [W~GM I T ) ]  there is no

T/N Sampler Model

~~~~~~~ R T( 
GM 

~ 

w ,~ 

~ 

D ,~~~ 01

1 
~ 

I 

~~~~~~~~~~

Figure 18. Vector Switch Decomposition; Slow-Input/
Fast-Output Sampling
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imm ~’retise i i i  t h e  dimension of the pulse transfer function matrix . if the

~ v e ct or  has mu elements and the P vector  has p elements , then (W [W~GM
1T )

is a im ts; ‘< p matrix. However , one should also notice in connection w i t h
E~ . p~; that  sin I itt crmnedi :mt ’ vector . ~T, has been de t’lned (commcep tmmal ly,

it least- ) wh i ch has N elemnent-s . It is frequently the case that time an:m lyst
ins ito i t t - crest  i ~ 

pT When this it; so , a~~ l i cation of vector swi tch  dccc m n—
A O5~~i lot:  does net  result in I m icre as e d dimensions for slow—input / f ~~~j —outi’ut

sampi itsg ci omen t like that shown in F.i • 1 ~~~ .

c cc, ’ with a c i ec  1’ c nu t t i er  cad ex:u:a) to to demcitstrat the  u t i l i t y

o X ’ :aiv:mn ’ed - — t r: ,t:s t ’o rm tms l:~ oms ju imc t  ion with swi t cli deccmm~ cs it let: • Cctmc i Jer
10, 5 c t up lit a p11: tilt ems s:m ’.smple r l’ormmm at.

L~\~ ~~ .i cIt .i~’c omt~~~:: i tt -ott ,

-1
[uw 1

T {w~ R I ’I’ ( i~-~~)

- .-

T

S 4 s m

1 Ii , ~~~~~~~ ~
_ (sT/

~ )11 
T cT ‘

~~ (i-c )s i b  s -i- a -
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~~sT
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Figure 19. Illustrative Example

Note the manner in which w, written in terms of delay factors in Eq. 1~59
Is converted to advanced factors in Eq. 160. Equation 160 is in a form

suitable for the use of the advanced z-transform

~~~ ze~~~~
s + a  —aTz — e

Equation 160 becomes
.5,

‘-aTZ — e

—flbT /~ —bT/~T — 
Z e - e - ze 1-iC - —bT ’  —bT ’ —bT —aTZ — e  z — e  z — e  

- 
z — e

—2aT/’-

—aT
— e

Therefore ,

—flbT/~ —nT I~ —bT /~ — ‘u T - ’~cT z[z + e 1 (in ’)

Next , repeat the problem using the phantom sampler (Eq. ‘v - ) :

= 
S 

. GT 
= 

: 
,
~~ 0 sT~~ ( 1 s - ~~—aT - —bTs — c  n — c

‘-0:

‘ . 5 —
.

- -  — — . 5- . 5- .
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T-’~ 
T/~ T 

‘
~~ A: B:C - = G R = 

—uTT~ —hT~~ 
(lt’4 )

n — c

It is readily determined that

_b T A  —aT ’
— 

e 
- 

—e ( i t ”)
L —bT ~~~ ‘-nT 7 A ‘ —FT ~ -~mT ~

A
c — e  e — e

Equation ii ”- implies a continuous “ge nerating ’t t ime funct ion of the form

c( t )  = Ae t 
+ Be bt ( 1 c ~~)

so that- upon resampling i i i  the T frame time we obtain

CT - - 
A: 

+ 

~~_ e~~
T ‘ 

z 0sT ( 1 r i7 )

S u b s t i t u t i ng  for A and B and then clearing gives

—mT - - 

~ —aT ~ —bT ~~~ —2aT -~~~

= 
4: + e e + e - e ] (1t ’~)—uT~,.(z— c’ .~ — e  ,,

E~;u:mt ion 1 n8 is in :mgreesttcm: t with the  switch deccmmposit . ion result of
Eq. ic’ ’.

i’mri e may oormc ~ mmdc that- the phantom sampler approach is macre ct’l’!c I em it.

4 
thin-i t he vector swi to l l decomposition approach whemm both approaches apply
On the other hand , vector switch decomposition always provides a mneam :s for
analyzing s ys t em  properties independently of system input signals which tire

ti s-ispecified or when various input signals are of interest.  The coinputa—
t i o n a l  approach one uses for any given problem should he select -ed en the
bus is of t hose cons iderat ion s ,

— _ _ _
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We may also not .e that the vector switch decomposition tool can be used

to model the computat ional throughput delay of the computer . This topic is

treated in Appendix F.

M. SECTI~ i

A table of abbreviated transforms has been developed usinc the transform

for an exponential function of time together with several transform domain
properties. This table , coupled with partial fraction expansion, enables

us to move back and forth between the t-, s-, and a-domains with relative
ease, Basic background material for analysis of multi-rate sampled systems

was also deve loped. Included were discussions of the “phantom sampler,”

vector switch decomposition, and the “T/N ” transform approach . Examples

have been used to demonstrate the strengths and weaknesses of each tool and
to call attention t o points which will be developed in greater depth in the

t ex t whi ch follows .
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SBCTI(Ii III

ANALYSIS Di TI~ w ’ -DC~AIN

A. E~ R0DUCTI~ I 
—

Diii- I mig the I 0’ ‘O’ t: and I ‘ s the need for imulmmt .imm 1 ~ open~ amid closed—

I cop t i  i rcra ft respom i— ten fmu ’mi ished an mipprec I able :Ltm ~ c tus for the devel op—

men t. amid re fi nement of d iso r ete  tm .l~ eI’.I thins for the s imaultit ion of cotit I mucus ,

‘

systems u sing  di alt-al computers: (e .g. , PcI ’s . 1 1 — i A ) ,  Thus , t h e Tustimm

trans fo~ mm met-hod and other climmilmir techn I mpi en for time :ipproximnsite ci iscr,- —

t.i :-. sm t - ion of contlimimous systems in side it feas I blo t o  rep] ace su i smi  o~ compute r~
w i th d i  i t-al computers for time s immilat:i cmi phases of a design e tt ’ ert . Now,

t im i s  :ippma ~: mchi  itt also commonly applied to design digitcil ccmit ~rci ]awmm for

t’3 y— b y— w i rc ai rcr a f t . F.t m’s t si cciii. ] nuous control law is syptimen i-ned, mind

then I 1 1 adapted for digital implementation using one ci’ the approximate

~h I cc m ’~ 
- t I sum t; m u  met hiods or igi nally do i’eioped for s imnulmit ion (e • g. , Re fs. 1~4—

I i  ) . ‘rids procedure is ,‘sm .1 I ed emmmlsi ti in.

T im ] :; uppi i cation of emulsitiomi for ti me des; I gm m o ~‘ mm di g.i i-a.] control]  er .1 :;

met 1 v:mtod both by a ñmndcunentmd r e l i a mmee  on system design cr1 ten a developed

for : m m n m 1 o t ~ systems and the justi t’i tthle des ire t~c preserve the large body ot’

shes i gn exper icl ice built up over  l iii ’ past twenty—fi ve years . ~nulmmtion is simm

approximate procedure when the Tusti mm tr;utsfonn or other “direct nmmbst i t u —

1. len ’’ methods tire used. Iii gt - m mt - i -s m , emulat 1 cmi procedures fall i i ’  s i cc o im mi l -

for mult t J)lexer/datmm bits e f I ’et ’t-s and , muore importamitly. require usc ’ ol’ hi gim

update r:m t e s t  (short counput at- I cmi l’ramne t I mmmcc iii order that time i nimererit-

:mpprox I mat ions be v ;U . 10. Thus there i s a  need for a di rect ci I I t. st.I des: i~ mm

prcwemIimre wh I elm iii exact (in cii t I ito L i tin to mipprex i mate ) , ta -com m it  I 5 1cr time

effects ci’ data holds, computational delays, etc ., mmmiii yet precerves t 1i1 ’

cxpe r I ‘i i ( ’e and physical .i mis - i i-~hmI - developed eve r the years mis -i tig convent- I

igmi procedures . The main pu rpOc~- of timi a s e ct - i  cmi i s - t-c ii i  gu i  I i-t im I th e

pro-perth’s ot’ a design domain wherein these  out ,leotivc s ire reali :;ed,

I fi emi ly, attention in f t i e m m n e d  ott the W ‘—domain — a dc~naium related

t o  the well—known w—domain ( R e f .  8) by an ;i.1A — irnp o~~ m m m l  scni .e fact-or. It

I —— 

- - —
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is a donma l m t where iii t im , - m ien—m i tm i mnum pimmisme effect-s ci’ the ~suui i pl  I rig mind dat a

hold operat lo r i s  cs ui i  be directly account-ed for u s in g  con vent- I orm;t i fre imit ’ ri ~’y

domi m In design I eels such its m ’ ’ot 1 coi m s mind ilode plois . These - c i t y - n t  I c m i i ]

t’re~ mme m m~’y dem mu iii des igim tools can be misemi to ~-ouis  I der;thl y it rest  m m ’  s t i  c an t  age

In t he w ’ —donimi In than ‘in the w— or ~—domaa In~ bee s i l t s ,- so y e  i ’ m I itt~ n- - l’owerfiul

mumsu  .1 ogles be tweemi the s —dommu iii t u mi d the w ’ —donu t In cx I s ;  I- . Ti m e t  - - e I I -

s i re • Itt a s ; e m i s ; t ’ , I lie key to exploit i i t g  the w ’ —tio ma in l’cm ’ 1—s I g im p m mm’ po:  -;

m;ik lag ill r ec t -  dos- i gui I mi thm ~’ w ’ — itommm;t in tin s i t  t ract I ye alt erntmt ive I ci do: ; I

1w emmuml i t t  I on,

In t h e  se ct -  ions  w h i ch  follow , Wi i’i m t  review b a s i c  properties wh ich

make t~iie w ‘ —miomna in p re t e  rattle to t h e  :‘—dom;i l i t  or w —dommi in, iou OW ii ig 1 m in

ill miS t-rn I - i vf’ t’xs mmlmr h-si are USOd t~o hi gui I gilt t i m e  analogies het-weeim .s mind w ‘ •

Next; we demons r a t e  tha t s ; s m l  i s ;  t ’tm ct om ’v des; i g r in  can  he ohs-I mu ned i i i  rm g conv ert—

ti ou st  I den gut su t pm’ es i c ime s ;  evem m for I ow dsm t s i  rat-es whe re m ipprox imamit c - Ii sc m ’ c —

I - at ion techn i ques su r e so seri -’mmsly iii error s in  to be I n v ;m i  Id . Herein lies

i-he- mami in c on I c  i l-mi t i ciii :  m’ , -c~igr1 it I Sifl t-hms tt f lit ’ W ’ — dCt m f l i i f l  models t ime n;mnip l i rig

ammO ds -t - s i  ho] 0 
~
‘
~~

-
~~

- m~tm t om i :~ ox- c’ I I y , regsi mat I t ’s; s ci’ tim e sanip lim ig r at  e crimp ] eyed

timid t h a t .  I lie w ’ — v a t ’  s i t - I -  I :~ I o ’mi s ; t o  t he  s — v s i m ’ i s m b l e  in  the semis -c t h a t

till t’;mm i 1 iso ’ fr equen cy donm :m 1mm ~l - ;  i g m m cs-mi ct -pt S in’ocedl ire s , and i n  to rpre i s  —

1 0115 ‘an ‘ice carried over cilia - I- ly

3. RZIATI~~~~~~8HIPS 3E~~~~~~E~~~~~ z , w . AND

r im t ime s i m i s i l ysi:; of I. i msc s ir ssmi;m ~’L-i I t t  a :~y ;t t e umms ; , mi s c c i t ’ 5- ~

m’e t tml h is in t tamn~ tot’ t’ummc t- ions wit I c t s t ur ’e r : t t  I ontO pcm lyimctmi ;ml t’m~ ii ’t- l o u t s ;  cit s’

Th I s; i s ;  In d i n t  I m m c l - i ciui t . i  t ime ‘ct’ i’ - : s p .  - u t - I  mt ~t I m ’ a m t : s  for  t’um o t i cnn m m : s — t i ’t t t s i  itt

t e r m s wim I ci m mire tr;mmise em id , ’ rm t si 1 t ’tm m me t lo ut s of s t , ‘it, is - alSo tim ~- cs l: se I Intl

I lie 1 c i i  list it ’ cii ’ ti re :;—p I si m m - in n t — t i - p  - 1  - s t  hit I mi t - c r i  or of t i  m u m I c I i’c le

Iii hi ,~ -
- — r I t mn ~- • A d m ’mmwb:ick el I he - — ic m m m sm ii: is I l i s t  ccii v - m t  1 I oim ;ui , j a; i g mt

cr1 I —m’ ~ a , s ; t m t lm is ;  cool I ‘,- it - - ; su m - I 1 , 1 , - ~‘l ’t s , - - ma ’ mic ra— h i ill - ‘ ii i  t t o  m l  o r —

pr- . Mc m - ’ ’~~ - r • s i t  b igh t  s i~;t ~ ’ I liii — i ’ -  e: ; , )tt~ . :—pi mi ne pci1 es- m in d -e m ’c ;t

- c ci u i s t t  - m ’ on t Ime i m ir It - ‘ I r t ’ le • ci ’~ - m g n itrite r ’i c-il prols- lt ’~t;; of si  ; ;iil ’s ; I - i t —

1 : 1  I s m s t g t  I i i i  - , l I t ’ — m’ -g i ott of I s —  — 1 - 1  s l t t t ’ com’i ’,— :;3t om t~h I i i 5 ~ I c  5; ( ml ’ Ic -a s t  551

he h m s t v  l o t ’  i s  I tO  ‘rio t ’ I o I l i t s t - i t  - ‘ I rc 1, ’ wh i I ‘hm pr ev cmi t s li t ’ ~1 t reel app I I

I join of R eui t - i m ’ :m s t  -ii ’ I I I  ty c r 1 1  em ’  a , }I1 -t cr 1  -s m l i v  (~‘ .g . , nee R et ’. ~ 1 , l i m i t ; 
- ]

~1
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fact prompte d the appli cation of an additional bilinear transformation
which maps a function of z into a domain where the region of stability is
once again the left half plane . This is the so-called w transformation
defined by the equation :

w ‘
~ ( 1 69)

One may use root locus and Bode plot methods in the w-domaj n w i t h  more
facility and insi ght than would be possible in the z-donmain , even though
each doma in cont ains exactly the same Information .

However, the w-domain still lacks other desirable properties. Moat
important of these is the property that w approach s as the sampling
interval approaches zero. This property is not provided since

= 
n — i  esT _ i sT+ (sT)2/~: 

~~~
‘ ‘ ‘ _ (170)z + 1 e5 + 1 ~ + aT + (sT)-/:~ ÷ . ..

mind in the l i m i t , as T 0, w approaches zero rather than s, A simple
scaling of the w-plane changes this situation dramatically, Define

-V 

w ’ ~~~w z = (i - i )

as tim ,- no-called “w-prime ” transformation wherein

— 1  :e 5T~~- I 
— 

‘ sT~~ (s T ) - /~~~+ . . . 
(i~’’)

- 

T I - 

T eST + i T -~~- s T  -t (sT)- /- - ’ ~

In l ime lim it s in  P —
~~~~ 0 in Eq. 1(: , w ’ approaches s,

Thi s ;  property is i g m m i f  1 ‘ m it .  i n t h s u t -  it  e st mmhlj sh ,’s thet - o n c e p t t i t u l  hum ; is for defining a quantity 1mm time w ’ — dctm: m it i— 

w h i c h  in s i nai  ogemt s ;  t c fi ’ ’ tn t -us -v in the s; — d o m su l i t .  
~ mrt hmer—more , the s u u m - m i o g y  la - on t ’s  - m i t  Identity in tile limitin g oti s-c,

a - “
~~~

‘-
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We are unable to cite a readily available reference for the transformation

given in Eq. 172 even though the relationship is well known to many prac-

ticing control engineers.

One may, of course , use root locus and Bode plot methods in the w ’-dornain

as well. However, the relationship between angular frequency, u , and the
imaginary part of w ’, v , is

v = ‘.,~~
- tan wT/2 (v  w for ~~ < (173 )

The approximate relationship between v and ~ is significant in that the

designer/analyst may regard v as angular frequency (for lv i  < 2/T ) during
qualitative phases of design development. Conversion to actual angular

frequency units is almost always unnecessary. Moreover, (w ’)’~ itself is

the trapezoidal integration operator analogous to s”~ for continuous systems .

Finally, the unit delay, z’
~

1 , whe n expressed in the w ’ -domnain , has break

parameters which are a function of sampling period, T, and has the form of
a first-order Fade approximation for a transport delay in the s-domain.

-

- 

= - 
w - 2JT (1 7~~~ )

To illustrate another basic relationship which exists between the

s-domain and the w ’-domain, conside r the z-transformn for a continuou s low-

pass f ilter sect ion

H(s) = + a  ( 1 75)

obtained assuming the input signal to the filter has been reconstructed

using a zero-order hold (ZOH). The result is —

- —sT 1T —aT
-

~~ H(z) = 
1 — e a ( 1 — e (176 )s s -4- aj —aTz-e

59 
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Applying Eq. 171 to Eq. 176 gives

-i
-

~~ H(w’) = — (T/2)w ’ + 1 -~ 2 1 — e’~~
T —( T/ 2~w ’ + 1 ( 177)

- 

- 

T 1 + e~~
T T 1 + e~~

T 
, 2 1 — e~~

T
— w + 1  w + ——aT —aT2 1 — e  P 1 -m- e

The equal-order over equal-order nature of Eq. 177 is, of course, a direct

- 

- consequence of the use of Eq. 171. At first one may feel that the analogy

between the s- and W V _domains is weak, since a proper rational function of

s will always map into a rational equal-order over equal-order ~‘unction
-
~~~ of w ’ . However, this is not the case if zeros at infinity in the s-domain

are considered , for then the s-domain zeros at infinity correspond to the
I V et (tra V V f in i te  zerom in the w ’-plane . For example , Eq, 175 shows that H(s)

- 
‘ has a pole at s = —a and a zero at infinity . In the w ’~plane the pole at

$ = —a is mapped into

‘-
‘ 1 —aT -~ -

W = 
— e  

T ~~ 
a 

~~~~~ for al ~ ~/;~r )  (17 8 )
T 1 + e

whil - the s oro s i t  m; = ~ is mapped in to  r u zero at w ’ = :‘/T. Obviously, as

T 0, w ’ s, the w ’-domain pole goes to —a and the w ’ -domain zero

approaches infinity, its proper s-plane location . This is a general result:

every pole and zero in the w ’-plane has its counterpart in the s-plane , an

long as the zeros at infinity in the s-plane mire counted.

Notice now the clear resemblance ci ’ Eq. 177 to its s-domain counterpart .

This is in distinction to the z-domain counterpart (Eq. 17i~) which ha-; a pole

that approaches t.}m ~ unit circle as T 0.

The zero at w ’ = 2/T is especially significant. This zero is introduced

by the ZOH used to reconstruct the input to H ( s ) .  It provi des a ruoiunirmimunm-

- •  
phase contribut ion which is the effect ct the data hold samp ling cs-i .e ~ms u ra-

meter.  This provide s another major advantsige of the w ’domain in comnp ar i s cu

to the z-domair-r since the effect  of the dat a  hold and sample r ;ite t~i i L  be

quite apparent in root locus or Bode p l.Qts . To emphani c th i s  point , let
the input to thc cont I n t t c t i s -  f i l t e r  be reconst ructed w i t  Ii - m s - c t  It - - r ( yl’c ci ‘

~ 
-
~~

s O  
L

~

- --- -

~

, - - -— - - -
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data hold called the “siewer data hold.” The slewer data hold results in

constant rate o u tp m t t -  between sampling inst-ants and has no discontinuity

s i t  the sampling instant . U simmg the slewer , one computes

.5’,

-sT 2 1
T

11(z) 
(1 —e  ) 

— 
a ( 1 — ) )

Ts’~ 
S + a -

- -  k~-+ ~
aT1 

+
~~~~~~~~~~~~ 

~~~~

Tz (z—e )

Or , u s in g  Eq. 1(1 ,

— 2/a) - I- (T~~~2/a)e
_aT 

~~~~1 
~ i1l_ ~ 

W V 
+ ii

H (w ’)  
2( 1 — e 

—aT 
— 

— (i8i ~

[i.. w ’ + 1 4 w ’ + 1
t2 1 ~—ai -

Obse rve that~ the slewer dmi t - mm hold has both tu pole and nero in the w ’ —plane

model. Thus- it is - seen that the use of a zero—order hold introduces a non-

mninitrmum phase zero sit w ’ /1 (refer to Eq. 177), whereas the slewer intro-

duces both a pole and zero . Fim -ially . note that Eq. 181 reduces to

ilium , a

~ 
_

~ -o H(w = + tm 
(ift )

sin wt ms - ti m e ot is -c  wi th  t i m e  - se  r e—ord er  l id  d .

Table - sr~nmstrizes the m ’ci s i t -  1 o imsl i  i ps; betwee rm the var -i otis- plammes for three

di f l ’ ’ ren t -  f i l t e r s - o c t - i  ciii; su n  sumnimig t ime min e o t’ a so ro—or de r iiol d. One may

o vtu I m s - u t - c t I m e s - c  t ransfer funct i cmi i ;  us i ng T t i n  a paranmeter , to obtain a feel

for  I I i ’  relati Vt’ ps-n i t - i  cit lmi ~ of ps-i ’s- and se ron lii Lii , t hree dommi ins.

Thus fa r , t - imr ce important propert ies-  of t h e  w ’ —domain l i t i V i ’ bees-i enu—

mneriited : 

t i  ~

- 
—

~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~-
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• w’ —~ -s as T -~.O.

• The nonininimum-phase effects of data holds become
clearly evident .

• Conventional methods for stability analyses continue
to be applicable since the left half of the w ’-plane
corresponds to the left half of the s-plane .

A most important property of the w ’-domain which remains to be shown

is:

S Conventional frequency domain synthesis methods (both
scalar and vector ) continue to be applicable , even when
the sampling rate is so low as to cause large differ-
ences between s-plane and w ’ -plane pole and zero loca-
tions for a given plant,

This property is the topic of the next two subsections .

C. ILLUSTRATIVE DESIGN PROBL~~ —
SHOE-PERIOD AIRCRAFT MODEL

Conventional frequency domain design methods are directly applicable

in the w ’ -domain. This will be demonstrated in two stages. In this sub-
section we first consider the design of a stability au~nentation system

using a representative model of a short-period aircraft.* The use of the

second-order model will allow us to illustrate clearly the manner in which

the non-minimum phase contribution of the data hold affects closed-loop
system properties and responses. (Furthermore, these effects are different

for a disturbance input than they are for a command input .)  The short-
period model will , however , tend to have modal frequencies well below the

fo lding frequency even for data rates as low as ten samples/second. Thus ,
the most dramatic effect that folding (or aliasing) may ha ve upon the plant
w ’ transfer functions will not be evident . Therefore , in the next subsec-
tion we consider a fourth-order aircraft  mode l which includes a high fre-

quency, lightly damped bending mode for which the effects of folding mire

dramatic. This will enable us to demonstrate that the w ’-domairm continues- - 

-

*The technical details of the models used in this subsect i omm and the -~ -

next are contained in Ref. 17.

- - .5 ~~~~~~~~~--- -- -~~~ - - - .5 — - --
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o ~ b i d  s - s i t .  i ;  !~t u ~ t .t ’t’ V ci Osted—i001) designs oven when the differences between

In’ —dots-s il m s s-md w ‘ —~i o m m m si  j i m  modal representati cnn t ir e large

Comi :t I dor fi s-nt the simplified aircraft model ci ’ Eq. i8~:

[ 4 1  1— 1 —37 1 1~1 F-~1 1—37
1 1 1  I I  I~~ I I~ e ’~I 1 °~ 

(~~~~ )

~~~a ]  ~~ 1 ‘ ] L ~ J ~°J I_ — 3 1

In Eq. ~~~ ~~ 
is - the control input, ag is the gust disturbance input , and

1 ( body ax i s -  p i tch ra te )  ni-id a ( inert ial  angle-of-attack component ) are the

at ~mtes of he s v s l e m n , Suppose lie cont inuous control ler  is designed us im ig —

he m u t t  i Loop 511151 I~,-s is  t echni que of Het ’s. )~ t i s id  ~~ ) .  The block diagram of

l-~~~t~~. 0 d ef i n e s  the closed-loop configuration wi th  postulated compensation

networks H i ,  I t - , and H~. In Fig. ‘0 , H 1, H :’ , and H~ are to be determined

(d esign ed) .  R is the conmmnand inpu t , and x 1 and x are used to represent the

S t t t .t e s -  q and a, r espect ive ly . App lictu t ion of the mntilt iloop analysis method

I I
y
~~~~I n-i~.I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
H3 ~

—-
~~

-
~ 

A / C  I
— 

or n z )

H?

— 

!- i p m m r ~- ‘O, i m l L ’ -k D i : i g r - m s s m , Ilimms - t~rmttive Exammiple ,_ t 
-

_ _ _ _ _ _ _ _ _ _  _ _

jj i
-.5 .-—— “~~~~~‘ LJU~-



F -\ 
-~~ ~~~~~~~

- - - —-- 
- 

—m

-
‘ y ields the matrix of closed-loop transfer functions directly . The theo-

retical details s— f the nmultiloop analysis method sure documented in Chapter

of Ref.  R~. 
-

I x  I x-~ x’~I N~- H , ‘ N - 4 H 1 1 1 -N  ‘ .
~ 

‘

L_ ‘-~~,-‘ - I cg I ~) tl t L ’c~ - — l - __ 
C- ’ ’

A -i l1~~I i~ N~~~ It 1I[3N~~~ 

- -

The various n~umme r at or S of Eq. 1~~m are fothid usin g Cramer ’s rule suppl ied ic  
1 -

the Liup ituco t r amm sfo r m of Eq. 1 ~~ (nec  Eq. 1 
~~~

‘) .

[ 4 1  
s 4 3]  [:] [.-

~

o ] [:1
• 

N~~. for examp le , is found by substitut I ug the ~~~~ column on the right—hand

side of Eq. 1 ~~
‘ ‘ into I-h e x~- column on the left—h~utd s; ide ot’ Eq. 1 ~ - mind

k eviuluat I n~ the determinan t of the array t hum t  results-. A is the cim sirti ct or—

1st . j o  o~~’ mm ~ locp polynonmis-ul t u t d  i s  t Im e i.tetenninant of the left—hand mati’ ix

in Eq. 1~~- . To i l lustr ate

-4- 1 .5 •-) 0 -~~~~~

A ‘-‘ a ’ 4 1~s- + I t ~~ (a - -  7)’ -u (in)’ ( i s - - )
— 1  15 -

~ 
“,~

—: -~ o ( i ~

= —‘50(s ~
) (1~~~

1~ 
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~~~ thl5 Poimit on, th~ design effort for a ~~~~~~~~~~ comitrc ii~,r would
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Figure ‘1. Di gital Control Block Diagram

~ I by a sampler. All the remaining elements of Fig. 1 are to b~ iin~mlenienmt .ed

on a di gital computer. For simplicity of presentation, the d at - s t  hold I n

as-sunned to be a zero—order hold; however , the synthesis prc’ct ’dsmr e we sure

about to cxi’’ nr e will be direct ly zmppl i cable for other ty’pes of Wm t  s s holds

tm s well ,

Tak lag the  —trans form of the fi i’s-I —order net ci ’ d i f f e r e m m t .  1 0 W i t i  i 01ts~

I von in Eq. 1~~

$ 
I

.7r ,~~7760 C9 I 2 . 0 7~~~-~) 1~ x 1 ( z )

x ( z )

J 
~~~~~~~~~~~~~~~~~~~ —2.8 ~ 1 F ~~~~ 1L I ‘

— . 212 7 19’~ 0 , 1-iO 1’7L. ~( 10

E -~s-~ t. 1 055 10 ~ may i~ devo 1 0Th’d t’rom Eq. 1 ~ ‘ ‘  515 1 I1I ~ C’ I t .Iim ’r t i me -Io:st s i 111 or

fre .lsmt ’msc y d~’mst -~1 m- - cn1-’r ’st~- ims ’s- ret ’ci’ t o  A~’m ’ets d ix 1’ ’. ~~~~
- have -i~~ s - sm~d she gust
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inp ut is sampled at 1/T smuimples/second amid h e l d . This is s o m m m t - w I s m s  it Vtti’ - 
C

C min ce wi th  the physical realit y ci ’ t.he problem since the plant is ac ’ u t I l :,
excited by si c osm t im m uous  disturbance . This assumption has bees m -td t s:mt re

because it has su s impl i fying effect-  upon this illustrative prob~ csn. It  ~s
not cssesstial .

Bec s suso  of the sanq-mling assun~ tion 0 m m ag, one can proceed com a -ep ~ s m - J I y

in terms of a conrpletely discretized system; the state vector has bocss
sti mpled and fed to the digital computer , as has the scalar input R . One

may think of Fig. 20 (and Eq. 1811) in terms of the :- and w’-domains tm s

well as in ternms of the s-domain. That is , in Eq. 1811 consider x 1( s )  to

he repltuced by x 1( z ) ,  N~~ ( s )  by N~~ ( z ) ,  etc. Thus , one can proceed to

~em ie r t mt - o the Z-clomain equivalent of Eq. 1~~. , given a sampling rate (assume . 

-

10 s-summp les ‘secend). and up-on making co~~ ut t mt i ons  of the characterist ic poly—
nomial and numerators ci’ time f i rs t  and second kinds .

z-Domaln

~ ~
y
~~ii~ (—2.~i’1~ 4- 2.8~ 1) ~ FV1I~-,(—1 .196~1 ~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I o~~(Z~ C

x- (z) (z2_ 1 ~~~~~~~~~~~~ ~ .~~ o5) -l H~~5
(_ .212(:-s _ , 1859) 4 H1 Ii3(~~1 .im91: 4-

Time closed-loop z-domain equation is not easily interpreted by methods use-
C ftl for interpreting the closed-loop s-domain equations . To facil i tate

- ‘ interpretation ; it is our assertion that the w ’-tran sform should he applied

to Eq. 1911, i .e., z = [1 + (T ’ ’)w ’J / [ l  — (T / f l )w ’}. The result is give n in
Eq. 19~’. The reader should con~ are the numerical values for the gains and

break frequencies in Eq. 19’~ wi th  the corresponding quantities in Eq. 19. .
Close correspondence for many of these numerical values should be noted.

w ’ -Domain

~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 lal
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It is our contention that the  effects of the sample/hold operation, the
data r - tt .e , etc. , are readily apparent in Eq. 19~. Comparing Eqs. 19~, and

19. it is seen that :

• Numerators of the first kind pick up additional zeros at
2/T in such a way that they have the same degree as the
character is t ic  polynomial.

• Numerators of the second kind pick up additional zeros
at ~1T in such a way that they are equal in degree to the
characterist ic polynomial .

• Every entry in the s-domain equation can be considered to
be equal-order over equal-order if the zeros at infinity
are included.

• Every - rmt ry  in the w ’-plane equation is equal-order over
equal-order. Zeros at infinity in the s-plane move to
either ~T/T or some other location , for example :

— 1,~~~H~ ( s )  ~~~_ 1.?’5(~~7 + ~)(~ _~~~)H~(w I )  ( 196)

• The numerical values of gains and time constants in the
w ’ -plan e are very similar to their s-plane counterparts.
(Although not demonstrated in this example , this obser-
vat ion ho lds only for modes having an s-plane modal fre-
quency which is well below the folding frequency (2Ws
equals 11n/T~. The fact- that this observation ho lds true
only under the stated conditions does not limit validity
of the w ’ -plan e analysis techniques in susmy way whem i the
stated conditions are not satisfied. That tu is  is so is
demonstrated in the next subsection.)

Thus , one may proceed in the w ’ -doniain us ing all the familiar synthesis
tools of the s-domain . The direct digital design in the w ’ -domain , however ,
proceeds with additional explicit knowledge of the mios -tminimuin-phase effect-s

introduced by the A/D and D/A conversion through the zeros introduced at 2/T
(equal to 20 rad/sec for this example). If these noimminirnunm-phase effect-s
become significant (the zeros move closer to the origin as the sampling rate

is decreased ) then they can be regarded in exactly the same manner and

treated using the same techniques as are used in the s-domain,

The actual synthe~m i s will not be carried out since the prime o~ je et ive

was to highlight the analogy between the closed-loop transfer functions in

b9 
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the s-, z-, and w ’-domains. A synthesis will be carried to completion

for the more complex aircraft model used in the next subsection.

D . SHORT-P~~IOD A~~CBPJT WITH ~~ !D~~~ ~WE

It remains to demonstrate the utility of the w ’-domain in the face of

substantial folding effects . This can be done by modifying the example of
the previous section to present a more realistic design situation . Speci-
fically, the aircraft model is modified to include a lightly damped bending

mode at 25 rad/sec (this will be close to the 10 samples/second aliasing
frequency of 31. 11 rad/sec) and to include accelerometer and rate gyro out- ¶

put equations . Thus, we will have one control input, one disturbance input,
four components in the state vector, and two components in the output vector.
The details of the model are given in Ref .  17 . For our present purposes , it
is suf f ic ien t  to modify our Immterpr etation of the block diagram of Fig . 20.
Let the bending mode state be called xb, the output of the accelerometer (n C. )
be x 1, and the output of the rate gyro (qg ) be x -,. The open-loop transfer
functions are given in Eqs . 197 and 198:

s-Domain

—11 7 .72 [.1~ 1 , 35.2J{— .03111, 26.357 ]

x 1 ( n )  nz 
- ~‘~975 13.i~o~ + ii [.0152, 211.3116} 

-

x:(s) ~g 

- -  — 

[.355 , 6.67~ ] [.oi . ~~ ~e

w ’-plane (T ~
- 0.1)

• 
_ 12~~.5(_ 27.53 

+ 
1)(13~~O 

+ i)r .i , 32.nfl J

X l (W ’)  

= -- 

—3.79711 + 4 [.0 0 , 10 . 2;’]

[.3789 , ~ .86 11]f .O 1117 , 6O. 137 f

( 1- )~
’’) 

C

0

j .~~~~~ d A.A .
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In these equations quadratic factors [s 2 + 2~w1-~s + wj 1] ha ve been shown
in the shorthand form [~, w~- 1]. Comparison of the corresponding numerator
and characterist ic polynomial roots iii Eqs. 197 and 198 leads to the
following observations:

I The short-period quadratic is essentially the same in C

either the s- or w ’-domains.

• The bending mode at 25 m d/sec s-domain has been shifted
upward to 60 rad/sec imm the w’-domain. (A a t - i l l  lover
sampling rate could shift it downward.)

• The n 2 numerator , which is equal-order over equal-order
in the s-domain does not have the zero at w 1 = ~/T.

Clearly, we now have a design problem where the folding effects are signi-
f icarmt.  However , the closed-loop desi gn can still be synthesized using
conventional multiloop frequency domain techniques. The following comnpe mm-
satiomi was sm rr ved at using ma-Lnly root locus techn iques.

H 1 H3 0.006 (109 )

.5 

H. -~H3 = 0.0085 ~~~~
- 

~~~~~~~~~~~ 
( 200 )

This t ranslates back into the z-domnain (and give s the required recursion
e~lu a t i c -im1 fo r i- li e discrete control law ) as:

H 1H~ = 0.006 ( ,  oi

= 
00 1X) : - 

( t ~

The ci t~sed— lcs -Cp rC’lat I onships arc- gi von by Eq. 1 ~~~ w h i c h  is vail ~i L’or
b .’ tIm the s— or w 1 —domains . Rather t han g I ye numerical comparison between
55 tn  I w ’ us I ng Eq. 1 I ( sits W 5I t done 1mm the previous sic et i cm -s ) , it is our
preference t o si m o w Bode plot s for t he ei~ 5o~l—lo op sy s t e mm m in I lie s— tim id
W ’ — l o m u s m  i m i s t . Time Bode plots for t ime tram-is Icr functi Ou ts of i m i te  r e s t  sirelot 1- ~~~~I in  rigs . , - 

‘
~~~ , st u d  - I I . Net- Ice in psirt. I cular the e t1 ’ e t - of time

s n  ISIS  I - 5 ismmmm — ~qm smse Zero on I l ie  magum it mude amid phase p l o t s
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At this point we come face to face with the central question , “Are
s—domain design procedures and concepts effective in the w ’-domain?” We -

proceeded ‘with the design in the ‘w ’-domain on the hypothesis that these

design procedures and concepts are effective and with the knowledge that
the w ’-domain transfer functions for the plant properly and conxprehen-

sively incorporate all the effects of the data hold and sampling rate for
C all modes. To demonstrate that this hypothesis is correct we must check

the time responses for the discrete controlled system to see if they are
acceptable. This is done for the q variable in Fig. 25. Notice that

there is no basis to conclude that the performance of the digitally con-

trolled system is infer ior to that of the cont inuously cont rolled one or

vice versa. In fa ct, the use of an accelerometer feedback gain of 0.006
has resulted in a lower q/ag amplitude ratio at lower frequencies for the

digitally controlled system.

.4

0 I 2 3 0 I 2 3

(deg /sec) 
~ ~10 ~S~~~~~~~~~~~~~ I0s /s~~s/s

a) Ideg Sfep,R 8 ~~,H3,~s)~~iO

5 . Time(sec )

(cieU /secL
.5 

~~~~~~~~~~~~~~~~~~~~~~~ 

: 

~~~~~~~~~~~~~~~~~~~

b) iodegStep a9

Figure 25. q Transient Responses of Continuous and
Di gitally Controlled Systems
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Analogies between system formulation s in the s- and w ’-domains havebeer-i drawn . To arr ive at the w ’-plane formulatj om one must first discre-tize the problem by means of a valid mathematicaj techni que if the effectsof data holds are to be represented exactly. This leads to a statement ofthe discretized problem l i-i the z-domaj n . The z-domaj n statement of theproblem is then converted t~ a w ’ -domain statement by means of a bi l inearalgebraic transfomnmation

It has been demonstrated that direct digital control law sy m - t i i o ~~~5~ inthe w ’-domain is a viable and practical  alternative to desi gn by emulsitj onof a cont inimous systems . Key properties of the w ’ -domain have ho ess SttitC.5j,and the “visih il i t \” of datst hold timid sampling rate mion-minjimmi phaseeffects in the w ’—domain has bc-en demnommstmated. Most import:sntl~ , it  li st sbeen pointed out. t hat convemstiomi sli frequency domain design procedures
as multiloop min sd ys ts i , Bode plots , root locus . etc . , arc valid tm nd  e t - u ~procethires in the w ’-domajn even in the presence of sign if ie~~~ al it i s ing .  CFinally , there is the convenipm ce resulting from the fact  that the im:1ginar~part of w ’, ~- , approximulates angulmir frequency, a~, for Ju~ ~ or - 

- ‘T.The impact of this is that  the control desi gner can now s3mthes[:e digit:lcontrollers using  comis iderably lover sanmplim-mg rates than are required whcnan emu1atjo~ design approach is used. ~ irthe~~ ore , the direct di git al  con-trol law s~~ thesj s approach presented here requires no new sm m I t i J ~~~ic~t1 te- Th-ni ques beyond those class ies -i1 freCpmemiey domain procedures required by the- 
5 emulation desi gn n~~ roaeh. The ana~ \~~icsil techniques are merely appliedand interpretetl in the no~~l manner w h i ch  we have descri bed lit this section .

--
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SECTI~~~ IV

!‘VIJrI-RATE TRA1~SP0RM D~~~ 4A~~~~~ APPROACH

A . ~~TRODUCTI~~

The existing state of affairs with regard to the multi-rate problemC 

(introduced in Section II) can be reviewed with the aid of Fig. 26. It
may well be that our major interest in Fig . 26 is the response of the con-
tinuous output C in response to the input r ( t ) .  This can , of course , be
computed , sin ce

C ( s )  G( s ) R T (s )  (:~~ )

fl ~~~ J C
T/N

T/N

____________  L
Figure 6. A Basic Multi-Rate Configuration

For exar~~le, if G(s) = 1/ (s -i-2) and R(s) = 1/s , then we may write , setting
z = e ST,

C ( s )  = 
(a + 2) (z ~ + + + ...) ( 20k )

There foro ,

c (t ) = e
_ t

u (t) ÷ e
_ (t_T )u(t. — T) + e

_
~~

t
~~
T
~u (t — 2 J ’

~~ 
• . .  (:0’-)

I C i i i  2C’- , while correct. , is not very i l luminat ing.  We ca m s g:iin mcr c
insight s~ m - 1 n. r - s m t -  - - cmp mi t s  LI  o m i t t j  c-fI le  l o m i c y  by looking -it t h e  intt ’r—sistmp i

.5 77
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response at a f ini te  numbe r of points. This is indicated by the use of a

sampler working in a T/N frame time. The basic property of the transform

domain , discussed in Section II, can be invoked to give

I
= {GRT] T/T

~ = GT/N RT ( :06 )

Letting z = 0sT /N gives , for our i llustrative example ,

T ’N - 
z RT - I \/ zN

C — 

— e~~
’r
~~ 

— 

— e—
~~~~ Az N — 1

We could pursue a cp~~~e of action that would yield a “closed form” answer

by finding the N + 1 poles of Eq. 07, expanding in partial frictions and

invert ing the  result hack into the time domain. However , t his “ in creased

dimension ” approtich is computationally burdensome , especially if t he orde r

of N is high.

Suppose we elect to proceed via the recursion equation route. What

additional complexities are introduced by the multi-rate nature of the

problem? Suppose, in Eq. O ( ,  that N is unity so that the recursion equa-

tion becomes

CflT = e
_ T

C ( f l _ l )T + rflT ( . o ~ )

In practice , one usually makes a mental note of the frame time and sup-

presses the use of i t -  in the recursion eqimat ion :

C~ = C Ca_ i  + r~ (O9~

In general , t he basic requi rement  is  tCs r  four storage registers (r1 .  C~ _ 1 ,

• - •  ~‘T- ’N 
/Crm) . Letting N be non—unit y , dot tue S e~ 

- and suppress the r- N

t’rammmc- t- rio :

—:i~ N T -C~ = e C~ _ 1 + rn , N ( IC~

.5 - -
~1-~

-— - . 5-
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~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~



But , r~ ,N 
mere~~ immdi cates that r( t) is he I mig sttm ssy 1- ‘d ev ery T seconds and

there fore uen—Ser e values result only for every N tlt occurrence . Tlmeret’ere ,

0

r~ ,N a = 0, N (1 1)

r(t)

It is sec -mi t i- m at the memory requl remnents ci’ Eq. ~‘10 mire bus I eally unchanged L -

¶ f’rom Ec.  - 0’. There is~ of course , the csilculat ional .1 og ic needed t.o imp le—
mac-nt - Eq . ‘1 I .  For ti m e example .

0 n1-’N integer
— T N  I

= 
~mm — i ~ ‘

~ ( ~ 
‘
~ C

1 n ‘N - i nt ege r

W h i l e  t im i s  pleasant. s t - t i t - e  of a f t ’si rs remmmains essentially unchanged when :-orc—

order holds sire used as ccmzp lers , th ’ m ss~’ of  hi gher—order dat- a I t o ]  do ( smici m

:55 he s 1 ewor ‘1 does i gui 5 ’ i c s sss  t I ~ ‘ ‘t i~e 1-he msmode 1 u~ comple x i t y .  These

c sms es  are di scmmssed in su cceed ing sect i -no ,

B. t~ E OF Z~~O-ORD~~ HOI~S AS COUPIRRS

Mcd i 1~ lug 1 .1 g. ‘
~~‘ t o  Include a :-ero—order hold (~

.
-01I~ g ive s  1-1g . -

- . As
we s}i :sil 1. see • t h e  use ci ’ t h e  :e r o—or dor lso.1 d will cause mm o .1 s sc m ’e :n s , ’ : m i I ito

d i rss~’tis ou t I it y or st ox’t i~ e re~l um I r ons eui i - s .

~~~~/ 
R T

~~~~~~~

] ~~ 
C

. erc~~,i m~C l e r  ib id Csnt ,-

‘
s- i

.5 - . 5’-- 
~~~~.• :~:T _
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From Fig. - ‘7 ,

C = G(s) Li 
:~~

-
~~ 

RT 
(:i~~)

— 

Evaluate Eq. ‘1 at a sampling interval of T/N :

-T T/N
cT ’ N 

f~~~~~

e

~~ 

)E G (suj  ET 
(~~i.. )

Let a — c-s T N  so that Eq. :-i~ become s

cT/N = ~~~~~~ 
1

~~~~,1T/N RT

CT/N (z~ 
~~~~~~~~~ f~~

_ 
e~~

T ’N
)[G(sll1

T
~~ 

RT
-

~~ 1) ~ 5

In Eq . .. 1 we have “ inserted”

a 
_ _ _ _  - 

a 
— ~~T/N

)
1 = 

~ 
___

~~ a — 
( i

in O~~er to give the bracketed term t u e  same fo rm as the Single_r atc- case(see Eq. :1~s) .

Equation - 1’~ Si mp lifies to:

~T ’N 
= Ii + + 

, (N-1)
3 ( i _ .  e

_5T
~~ )fa(sJj 1 

- 

RT (‘i~~
)

Let the power series in z~~ operate cmi the input RT :

- —‘.5-— ~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~ ~~~~~~~
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(-17)

—1 + ... -~

-~ N 
~~~~~~~~~~I~~~o s \  R 

nsf0~~ 
of s(s), 
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of Smoot 
~~~~~~ 

~~~~~~~ 
rnanfl~~ _1).~ has a part
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that

the t ime
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~ 
1~oret~t~~

u iti (218)
T i\
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+ . . . + 
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CT (i — e~~T)JT RT = 
a z ~

1 
+ ajz

m
~~ + ... 

~~~~~~~~~ R(z) (2:0)z + b1z + ... +

From Eq. 220 the recursion equation is written directly (let nT , the t imeindex, be represented by a):

= b1C~_ 1 — b~C~~0 
~~~
. bmCn m  + a0R~ + a 1R~~~1 + ... + 

~~~ n m  (:21)

The recursion equation for cT/N has identically the same form as Eq. 221 , -

- -

Simply recompute the a’s and b’s (the coefficients ) uSing a T/N samplinginterval . Now let the Index nT/N be a and write :

= b 1c~_ 1 — b~~~~2 — •. .  — bmCn_ m + 
~~~~~ + a l R~~ l N  + ... +

( 222)
In Eq. 2 2  the only noticeable change for the T/N case is the input notat ion 

-
.5

(refer to Eq. 2 19).

We illustrate with several examples.

Example 1

Let 

G ( s)  = 
( . ‘:~~)

The P recursion equation is

= 0~~T~ + (i — e~~
T ) R ~~ i , a = e5T

whereas the P/N recursion equation is

Cn = e ttT
~~~~~1 + (1 _ e

~~
T

~~~~R~ _ l ,N , z = e~~~~ (~~~‘~

- - —.~~~~~ 
- - - - .

~~~~~~~ — —
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Example 2

G(s) = (226)

so that

CT/N = 
z — [i ; (b/a) + (b/a)e~~

T/N] 
RT[1 + + + ~—(N-1) (227)

The T recursion equation is

= e~~
TCn_ , + R~ + (+ — 1 — ~~ e~~ T)R n_ l  , z = ~~~ (228)

whereas the T/N recursion equation is

e~~
T/N Cn_ i  + R

~,N 
+ — i — ÷ e~~Tm)R~_l ,N , z = e~T/N

( 229)

In the next section , these basic ideas will be extended in a manner

that permits the analysis of multi-rate closed-loop systems containing

zero-order holds. Before proceeding, it will be instructive to exercise

Eq. 225 for a cosine wave input . This is done in Fig. 28 for the case

where T 1 , thus causing a sampling frequency of 2n~ rad/sec. The input

frequency in Fig. 28a is mt/2 rad/sec , which bears an integer relationship
to the sampling frequency. On the othe r hand , the input frequency in

Fig. 28b is 1.5 Tad/see, giving a ratio of the sampling frequency to the

input frequency which is an irrational number. The effect of this on the
“steady state” response is clear . In the steady state , Fig. 28a has

acquired the additional attribute of periodicity, whereas Fig. 28b shows

the modulation caused by the non-integer relationship between the input

frequency and the sampling frequency.

The concept of the cont inuous frequency respon se of a discretely exc ited
system will be developed in Sect ion V. This will provide the tool for iden-

tifying the spectral components of wave forms such as those shown in Fig . °.
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